While non-typhoidal Salmonella (NTS) have long been known to cause gastroenteritis, multiple antibioticresistant highly virulent strains are emerging as important causes of invasive bacteremia and focal infections in the USA and globally, resulting in hospitalizations and deaths. This translational research proposal tests the hypothesis that appropriately engineered attenuated strains of Salmonella enterica serovar Typhimurium and Enteritidis, with attenuating mutations in guaBA (encoding guanine nucleotide biosynthesis enzymes) and either dpX (encoding ATPase) or dpP (encoding a protease), can play an important role in vaccinating against these NTS serovars by: 1) allowing safer, high yield preparation of purified O polysaccharide (OPS) and flagella protein for making conjugate vaccines (dpP and c/pX mutants hyper-express flagella), and 2) by their use in a heterologous mucosal prime/parenteral boost immunization strategy in which mice given the attenuated strains of S. Typhimurium and S. Enteritidis orally are subsequently boosted parenterally with conjugate vaccines consisting of Salmonella Group B and D OPS covalently linked to Phase 1 flagella protein of Typhimurium or Enteritidis, respectively. We hypothesize that this strategy will markedly broaden the immune responses elicited and enhance protection (tested in oral challenge studies in mice) over what can be achieved with either oral vaccines or conjugates alone. We expect SlgA antibodies and cellmediated immunity (CMI) stimulated by the live vaccine to synergize with the serum IgG anti-OPS bactericidal antibodies and anti-flagella antibodies stimulated by the parenteral conjugate vaccines. Two S. Paratyphi A strains, genotypes guaBAc/pXand guaBA.dpP, that have already been constructed, will be fed to volunteers in a Phase 1 clinical trial in grant-year 1 to obtain a preliminary assessment of these attenuations in humans (albeit in Paratyphi A background) and their likely suitability for attenuating NTS. Since Typhimurium and Enteritidis are the most common NTS serovars associated with invasive and severe gastrointestinal NTS clinical disease in the USA (and globally), this research can pave the way for development of a rational, highly effective, broad spectrum vaccine against NTS. If the bivalent vaccines cross protect against other Group B &D serovars and if (in the future) either a group C1 or C2 conjugate is added, coverage will then be provided against the overwhelming majority of NTS associated with invasive and severe disease in the USA and worldwide.

Public Health Relevance

Non-typhoidal Salmonella (NTS) that are resistant to antibiotics (difficult to treat) have emerged as a cause of bloodstream infections (invading from the intestine) that can lead to hospitalization and death, particularly among infants and the elderly. We have designed a vaccine strategy to achieve strong immune responses and to confer broad protection against NTS in high risk segments of the US population.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057168-10
Application #
8442355
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
2015-02-28
Budget Start
2013-03-01
Budget End
2015-02-28
Support Year
10
Fiscal Year
2013
Total Cost
$202,018
Indirect Cost
$24,527
Name
University of Maryland Baltimore
Department
Type
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Li, Huiguang; Hwang, Young; Perry, Kay et al. (2016) Structure and Metal Binding Properties of a Poxvirus Resolvase. J Biol Chem 291:11094-104
Ramachandran, Girish; Tennant, Sharon M; Boyd, Mary A et al. (2016) Functional Activity of Antibodies Directed towards Flagellin Proteins of Non-Typhoidal Salmonella. PLoS One 11:e0151875
Ray, Greeshma; Schmitt, Phuong Tieu; Schmitt, Anthony P (2016) C-Terminal DxD-Containing Sequences within Paramyxovirus Nucleocapsid Proteins Determine Matrix Protein Compatibility and Can Direct Foreign Proteins into Budding Particles. J Virol 90:3650-60
Chou, Yi-ying; Cuevas, Christian; Carocci, Margot et al. (2016) Identification and Characterization of a Novel Broad-Spectrum Virus Entry Inhibitor. J Virol 90:4494-510
Fraley, Stephanie I; Athamanolap, Pornpat; Masek, Billie J et al. (2016) Nested Machine Learning Facilitates Increased Sequence Content for Large-Scale Automated High Resolution Melt Genotyping. Sci Rep 6:19218
Levy, Revital; Rotfogel, Ziv; Hillman, Dalia et al. (2016) Superantigens hyperinduce inflammatory cytokines by enhancing the B7-2/CD28 costimulatory receptor interaction. Proc Natl Acad Sci U S A 113:E6437-E6446
Molleston, Jerome M; Sabin, Leah R; Moy, Ryan H et al. (2016) A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes Dev 30:1658-70
Riblett, Amber M; Blomen, Vincent A; Jae, Lucas T et al. (2016) A Haploid Genetic Screen Identifies Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus Infection. J Virol 90:1414-23
Ramachandran, Girish; Boyd, Mary Adetinuke; MacSwords, Jennifer et al. (2016) Opsonophagocytic Assay To Evaluate Immunogenicity of Nontyphoidal Salmonella Vaccines. Clin Vaccine Immunol 23:520-3
Plaut, Roger D; Stibitz, Scott (2015) Improvements to a Markerless Allelic Exchange System for Bacillus anthracis. PLoS One 10:e0142758

Showing the most recent 10 out of 360 publications