The hypothesis of this program is that Fabl, the conserved enoyl reductase enzyme in the bacterial fatty acid biosynthesis pathway, is a target for the development of preclinical lead compounds with broad spectrum activity against priority pathogens, including F. tularensis, B. pseudomallei, and Y. pestis. Based on this approach, we have developed inhibitors with potent activity against the Fabl enzyme from F. tularensis and 8. pseudomallei. Significantly, we have demonstrated efficacy in an animal model of tularemia. Encouraged by this progress and due to the need to develop chemotherapeutics against other priority pathogens, we will extend our studies to include the development of potent in vivo antibacterial agents against 6. pseudomallei and Y. pestis. Our overall goal is to rapidly progress lead compounds into animal models of infection for efficacy testing with the following Specific Aims:
Aim 1 : Rational Optimization of Lead Compounds Against F. tularensis. We will design and synthesize subsequent generations of our lead compounds using SAR information derived from molecular modeling, activity against whole bacteria and efficacy in animals and bioavailability studies.
Aim 2 : In Vitro and In Vivo Antibacterial Activity against B. pseudomallei. The in vitro activity of the current diphenyl ether compounds against 8. pseudomallei will be assessed by determining (i) the IC50 for inhibition of the 8. pseudomallei Fabl enzyme (FablBpm), (ii) antibacterial activity (MIC and MBC) (iii) toxicity, PK/PD and deliverability. Selected compounds will be progressed to efficacy testing in the 8. pseudomallei animal model of infection.
Aim 3 : Extension to Y. pestis. We will extend our antibacterial discovery efforts to include the pathogen Y. pestis. Testing will be conducted using the established approach and compounds with appropriate activity will be evaluated in animal models of infection. This research project fits within the RMRCE Integrated Research Focus on Bacterial Therapeutics, and will interact directly with RP 2.1, RP 2.2, RP 2.5 and RP 2.6, and utilize the resources of Core C and Core E.

Public Health Relevance

This proposal is to develop novel and highly effective broad spectrum chemotherapeutics against F. tularensis, B. pseudomallei and Y. pestis infections. In addition, such novel broad spectrum inhibitors can be used against other hard to treat bacterial agents with significant health relevance, particularly Gram-positive pathogens, including MRSA and Gram-negative pathogens including 8. cenocepacia, Acinetobacter baumannii, and Pseudomonas aeruginosa.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI065357-08
Application #
8375702
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
8
Fiscal Year
2012
Total Cost
$282,224
Indirect Cost
$59,383
Name
Colorado State University-Fort Collins
Department
Type
DUNS #
785979618
City
Fort Collins
State
CO
Country
United States
Zip Code
80523
Skyberg, Jerod A; Lacey, Carolyn A (2017) Hematopoietic MyD88 and IL-18 are essential for IFN-?-dependent restriction of type A Francisella tularensis infection. J Leukoc Biol 102:1441-1450
Plumley, Brooke A; Martin, Kevin H; Borlee, Grace I et al. (2017) Thermoregulation of Biofilm Formation in Burkholderia pseudomallei Is Disrupted by Mutation of a Putative Diguanylate Cyclase. J Bacteriol 199:
Furuta, Yousuke; Komeno, Takashi; Nakamura, Takaaki (2017) Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci 93:449-463
Podnecky, Nicole L; Rhodes, Katherine A; Mima, Takehiko et al. (2017) Mechanisms of Resistance to Folate Pathway Inhibitors in Burkholderia pseudomallei: Deviation from the Norm. MBio 8:
Pettey, W B P; Carter, M E; Toth, D J A et al. (2017) Constructing Ebola transmission chains from West Africa and estimating model parameters using internet sources. Epidemiol Infect 145:1993-2002
Rhodes, Katherine A; Schweizer, Herbert P (2016) Antibiotic resistance in Burkholderia species. Drug Resist Updat 28:82-90
Lehman, Stephanie S; Mladinich, Katherine M; Boonyakanog, Angkana et al. (2016) Versatile nourseothricin and streptomycin/spectinomycin resistance gene cassettes and their use in chromosome integration vectors. J Microbiol Methods 129:8-13
Rico, Amber B; Phillips, Aaron T; Schountz, Tony et al. (2016) Venezuelan and western equine encephalitis virus E1 liposome antigen nucleic acid complexes protect mice from lethal challenge with multiple alphaviruses. Virology 499:30-39
Calvert, Amanda E; Dixon, Kandice L; Piper, Joseph et al. (2016) A humanized monoclonal antibody neutralizes yellow fever virus strain 17D-204 in vitro but does not protect a mouse model from disease. Antiviral Res 131:92-9
Westover, Jonna B; Sefing, Eric J; Bailey, Kevin W et al. (2016) Low-dose ribavirin potentiates the antiviral activity of favipiravir against hemorrhagic fever viruses. Antiviral Res 126:62-8

Showing the most recent 10 out of 253 publications