The hypothesis of this program is that Fabl, the conserved enoyl reductase enzyme in the bacterial fatty acid biosynthesis pathway, is a target for the development of preclinical lead compounds with broad spectrum activity against priority pathogens, including F. tularensis, B. pseudomallei, and Y. pestis. Based on this approach, we have developed inhibitors with potent activity against the Fabl enzyme from F. tularensis and 8. pseudomallei. Significantly, we have demonstrated efficacy in an animal model of tularemia. Encouraged by this progress and due to the need to develop chemotherapeutics against other priority pathogens, we will extend our studies to include the development of potent in vivo antibacterial agents against 6. pseudomallei and Y. pestis. Our overall goal is to rapidly progress lead compounds into animal models of infection for efficacy testing with the following Specific Aims:
Aim 1 : Rational Optimization of Lead Compounds Against F. tularensis. We will design and synthesize subsequent generations of our lead compounds using SAR information derived from molecular modeling, activity against whole bacteria and efficacy in animals and bioavailability studies.
Aim 2 : In Vitro and In Vivo Antibacterial Activity against B. pseudomallei. The in vitro activity of the current diphenyl ether compounds against 8. pseudomallei will be assessed by determining (i) the IC50 for inhibition of the 8. pseudomallei Fabl enzyme (FablBpm), (ii) antibacterial activity (MIC and MBC) (iii) toxicity, PK/PD and deliverability. Selected compounds will be progressed to efficacy testing in the 8. pseudomallei animal model of infection.
Aim 3 : Extension to Y. pestis. We will extend our antibacterial discovery efforts to include the pathogen Y. pestis. Testing will be conducted using the established approach and compounds with appropriate activity will be evaluated in animal models of infection. This research project fits within the RMRCE Integrated Research Focus on Bacterial Therapeutics, and will interact directly with RP 2.1, RP 2.2, RP 2.5 and RP 2.6, and utilize the resources of Core C and Core E.

Public Health Relevance

This proposal is to develop novel and highly effective broad spectrum chemotherapeutics against F. tularensis, B. pseudomallei and Y. pestis infections. In addition, such novel broad spectrum inhibitors can be used against other hard to treat bacterial agents with significant health relevance, particularly Gram-positive pathogens, including MRSA and Gram-negative pathogens including 8. cenocepacia, Acinetobacter baumannii, and Pseudomonas aeruginosa.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI065357-09
Application #
8465799
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
9
Fiscal Year
2013
Total Cost
$313,607
Indirect Cost
$51,622
Name
Colorado State University-Fort Collins
Department
Type
DUNS #
785979618
City
Fort Collins
State
CO
Country
United States
Zip Code
80523
Lehman, Stephanie S; Mladinich, Katherine M; Boonyakanog, Angkana et al. (2016) Versatile nourseothricin and streptomycin/spectinomycin resistance gene cassettes and their use in chromosome integration vectors. J Microbiol Methods 129:8-13
Knudson, Susan E; Cummings, Jason E; Bommineni, Gopal R et al. (2016) Formulation studies of InhA inhibitors and combination therapy to improve efficacy against Mycobacterium tuberculosis. Tuberculosis (Edinb) 101:8-14
Charley, Phillida A; Wilusz, Jeffrey (2016) Standing your ground to exoribonucleases: Function of Flavivirus long non-coding RNAs. Virus Res 212:70-7
Phillips, Aaron T; Rico, Amber B; Stauft, Charles B et al. (2016) Entry Sites of Venezuelan and Western Equine Encephalitis Viruses in the Mouse Central Nervous System following Peripheral Infection. J Virol 90:5785-96
Westover, Jonna B; Sefing, Eric J; Bailey, Kevin W et al. (2016) Low-dose ribavirin potentiates the antiviral activity of favipiravir against hemorrhagic fever viruses. Antiviral Res 126:62-8
Shankar, Sundaresh; Whitby, Landon R; Casquilho-Gray, Hedi E et al. (2016) Small-Molecule Fusion Inhibitors Bind the pH-Sensing Stable Signal Peptide-GP2 Subunit Interface of the Lassa Virus Envelope Glycoprotein. J Virol 90:6799-807
York, Joanne; Nunberg, Jack H (2016) Myristoylation of the Arenavirus Envelope Glycoprotein Stable Signal Peptide Is Critical for Membrane Fusion but Dispensable for Virion Morphogenesis. J Virol 90:8341-50
Rhodes, Katherine A; Schweizer, Herbert P (2016) Antibiotic resistance in Burkholderia species. Drug Resist Updat 28:82-90
Voge, Natalia V; Perera, Rushika; Mahapatra, Sebabrata et al. (2016) Metabolomics-Based Discovery of Small Molecule Biomarkers in Serum Associated with Dengue Virus Infections and Disease Outcomes. PLoS Negl Trop Dis 10:e0004449
Rico, Amber B; Phillips, Aaron T; Schountz, Tony et al. (2016) Venezuelan and western equine encephalitis virus E1 liposome antigen nucleic acid complexes protect mice from lethal challenge with multiple alphaviruses. Virology 499:30-39

Showing the most recent 10 out of 244 publications