Several arenaviruses cause hemorrhagic fever others) and Africa (Lassa virus), and are classil antiviral with activity against these agents, riba infections and has significant toxicity. The Toya 705, with broad -spectrum activity against a nun 705 prevents death in the Pichinde virus (PICV initiated at late stages of infection. T-705 is cur influenza virus infections, so the safety of the c goal of this project is to advance the developrm facilitated by the completion of the following spi dependent RNA-oolvmerase (RdRp) is the prirr Program Director (Last, First, Middle): Belisle, John T. (HF) in endemic regions of South America (Junin virus and fied as Category A pathogens by the NIAID. The only licensed /irin, has had mixed success in the treatment of severe ma Chemical Co. has developed a pyrazine derivative, Tnber of RNA viruses, including arenaviruses. Remarkably, T- ) hamster model of arenaviral HF even when treatment is rently in clinical trials in the US and Japan for the treatment of ompound is being comprehensively addressed. The long-term ;nt of T-705 for the treatment of arenaviral HFs. This will be scific aims. 1. Determine if the inhibition of the RNAiarv T-705 mechanism of action aqainst arenaviruses. T-705 acts as a nucleoside analog specifically inhibiting the influenza polymerase. RdRp domains are attractive drug targets since they are not present in the host and are conserved among RNA viruses. Several strategies will be used to investigate the RdRp of the arenaviruses as the main target of T-705 inhibition, including time-of-addition and nucleotide/nucleoside competition studies, replicon-based inhibition assays and the examination of resistant viruses. 2. Determine T-705 distribution and pharmacokinetics (PK) during advanced PICV infection in hamsters and efficacv in the auinea piq (GP) PICV infection model. Tissue distribution and PK will be determined in infects infection can diminish kidney function, altering experiments in PICV-challenged GPs will facilit to the more costly Junin virus (JUNV) GP effice nonhuman primate models of JUNV infection. F demonstrable efficacy in GP and nonhuman pr agents, which more faithfully model human dise Research Focus on Viral Therapeutics, and wil }d and uninfected hamsters since pantropic arenaviral normal biodistribution and PK profiles. T-705 efficacy ate the selection of optimal treatment regimens for transition cv studies. 3. Evaluate the efficacv of T-705 in GP and :DA approval for use against arenaviral HF agents will require mate models based on infection with authentic arenaviral HF jase. This research project fits within the RMRCE Integrated interact directly with RPs 3.1, 3.4, 3.6, and 3.7.

Public Health Relevance

This project focuses on the development of a new antiviral therapy based on T-705 for the often fatal diseases caused by the South American hemorrhagic fever arenaviruses. This research will also compliment the development of T-705 for the treatment of Lassa fever, caused by the Old World Lassa arenavirus.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Colorado State University-Fort Collins
Fort Collins
United States
Zip Code
Gibson, Christopher C; Zhu, Weiquan; Davis, Chadwick T et al. (2015) Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation 131:289-99
Wang, Hong; Siddharthan, Venkatraman; Hall, Jeffery O et al. (2014) Autonomic deficit not the cause of death in West Nile virus neurological disease. Clin Auton Res 24:15-23
Scharton, Dionna; Bailey, Kevin W; Vest, Zachary et al. (2014) Favipiravir (T-705) protects against peracute Rift Valley fever virus infection and reduces delayed-onset neurologic disease observed with ribavirin treatment. Antiviral Res 104:84-92
Shives, Katherine D; Beatman, Erica L; Chamanian, Mastooreh et al. (2014) West nile virus-induced activation of mammalian target of rapamycin complex 1 supports viral growth and viral protein expression. J Virol 88:9458-71
Calvert, Amanda E; Dixon, Kandice L; Delorey, Mark J et al. (2014) Development of a small animal peripheral challenge model of Japanese encephalitis virus using interferon deficient AG129 mice and the SA14-14-2 vaccine virus strain. Vaccine 32:258-64
Richert, Laura E; Rynda-Apple, Agnieszka; Harmsen, Ann L et al. (2014) CD11cýýý cells primed with unrelated antigens facilitate an accelerated immune response to influenza virus in mice. Eur J Immunol 44:397-408
Soffler, Carl; Bosco-Lauth, Angela M; Aboellail, Tawfik A et al. (2014) Pathogenesis of percutaneous infection of goats with Burkholderia pseudomallei: clinical, pathologic, and immunological responses in chronic melioidosis. Int J Exp Pathol 95:101-19
Porta, Jason; Jose, Joyce; Roehrig, John T et al. (2014) Locking and blocking the viral landscape of an alphavirus with neutralizing antibodies. J Virol 88:9616-23
Jones-Carson, Jessica; Zweifel, Adrienne E; Tapscott, Timothy et al. (2014) Nitric oxide from IFN?-primed macrophages modulates the antimicrobial activity of ?-lactams against the intracellular pathogens Burkholderia pseudomallei and Nontyphoidal Salmonella. PLoS Negl Trop Dis 8:e3079
Phillips, Aaron T; Schountz, Tony; Toth, Ann M et al. (2014) Liposome-antigen-nucleic acid complexes protect mice from lethal challenge with western and eastern equine encephalitis viruses. J Virol 88:1771-80

Showing the most recent 10 out of 181 publications