The goal of the Genomics Proteomics Core (Core E) of the Rocky Mountain Regional Center of Excellence in Biodefense (RMRCE) is to provide post-genomic resources and materials, to provide access to state-ofthe- art post-genomic instrumentation, and to provide expert assistance in performing post-genomic experiments, and bioinformatics, resulting in enhanced research opportunities for investigators at reduced costs. The GP-Core accomplishes this goal by producing whole genome mouse and pathogen DMA arrays and other molecular detection tools and platforms, by providing and maintaining post-genomic instrumentation in a centralized facility adjacent to the BL-3 laboratories, and by performing experimentation for investigators who would otherwise not be able to perform experiments because of a lack of manpower or expertise, and providing access to bioinformatics resources, staff, and support. The GP-Core also develops technology and custom platforms for investigators for focused or more advanced post-genomic studies. Accordingly, the GP-Core (1) produces and develops post-genomic resources for investigators, (2) provides access to post-genomic equipment (3) provides genomics, proteomics, and bioinformatics assistance and technical expertise, and (4) provides bioinformatics and Computer-Aided Drug Design (CADD) services to advance diagnostic and therapeutic drug discovery, design, and development for RMRCE investigators. Together, the activities of the GP-Core support research objectives on infectious diseases important to public health by providing resources and equipment that are required for post-genomic studies, technical assistance for experimental design, data analysis and other bioinformatics-related analyses, and postgenomic services on a fee-for-services basis. Core E will support all three of the RMRCE Integrated Research Foci on Immunomodulation, Adjuvants and Vaccines (IRF 1), Bacterial Therapeutics (IRF 2), and Viral Therapeutics (IRF 3). Its resources will be utilized by RPs 1.4, 1.6, 1.7, 2.1, 2.2, 2.3, 2.4, 2.5, 2.7 and 3.4

Public Health Relevance

The role of the GP-Core is to provide research support and expertise in genomics, proteomics, bioinformatics, and molecular interactions to RMRCE investigators. Without the GP-Core facility and access to the staff, equipment, instrumentation, and computational resources maintained by GP-Core personnel, RMRCE investigators would be limited in their use of post-genomic resources and technology. Thus the GPCore is relevant to the accomplishment of the goals of the RMRCE.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI065357-09
Application #
8465817
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
9
Fiscal Year
2013
Total Cost
$178,247
Indirect Cost
$51,620
Name
Colorado State University-Fort Collins
Department
Type
DUNS #
785979618
City
Fort Collins
State
CO
Country
United States
Zip Code
80523
Skyberg, Jerod A; Lacey, Carolyn A (2017) Hematopoietic MyD88 and IL-18 are essential for IFN-?-dependent restriction of type A Francisella tularensis infection. J Leukoc Biol 102:1441-1450
Plumley, Brooke A; Martin, Kevin H; Borlee, Grace I et al. (2017) Thermoregulation of Biofilm Formation in Burkholderia pseudomallei Is Disrupted by Mutation of a Putative Diguanylate Cyclase. J Bacteriol 199:
Furuta, Yousuke; Komeno, Takashi; Nakamura, Takaaki (2017) Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci 93:449-463
Podnecky, Nicole L; Rhodes, Katherine A; Mima, Takehiko et al. (2017) Mechanisms of Resistance to Folate Pathway Inhibitors in Burkholderia pseudomallei: Deviation from the Norm. MBio 8:
Pettey, W B P; Carter, M E; Toth, D J A et al. (2017) Constructing Ebola transmission chains from West Africa and estimating model parameters using internet sources. Epidemiol Infect 145:1993-2002
Rhodes, Katherine A; Schweizer, Herbert P (2016) Antibiotic resistance in Burkholderia species. Drug Resist Updat 28:82-90
Lehman, Stephanie S; Mladinich, Katherine M; Boonyakanog, Angkana et al. (2016) Versatile nourseothricin and streptomycin/spectinomycin resistance gene cassettes and their use in chromosome integration vectors. J Microbiol Methods 129:8-13
Rico, Amber B; Phillips, Aaron T; Schountz, Tony et al. (2016) Venezuelan and western equine encephalitis virus E1 liposome antigen nucleic acid complexes protect mice from lethal challenge with multiple alphaviruses. Virology 499:30-39
Calvert, Amanda E; Dixon, Kandice L; Piper, Joseph et al. (2016) A humanized monoclonal antibody neutralizes yellow fever virus strain 17D-204 in vitro but does not protect a mouse model from disease. Antiviral Res 131:92-9
Westover, Jonna B; Sefing, Eric J; Bailey, Kevin W et al. (2016) Low-dose ribavirin potentiates the antiviral activity of favipiravir against hemorrhagic fever viruses. Antiviral Res 126:62-8

Showing the most recent 10 out of 253 publications