Dengue (DENV) has re-emerged in the last 25 years as one of the most significant emerging infectious diseases worldwide, posing a significant category A biodefense threat to the United States with ongoing epidemics in Puerto Rico, and recent outbreaks in Hawaii (2001) and Texas (1999, 2005, 2006). Its global resurgence, while partly explained by changing human demographics, increasing hyperendemicity, and mosquito vector expansions, remains poorly understood, especially with respect to the importance of virus evolution. We fill this critical gap by conducting a comparative evolutionary examination of DENV strains undergoing epidemic expansion, from replicate populations across the Asia-Pacific arena, paired with directed tissue and animal model assays for changes in virus phenotype related to epidemics. Our long-term goal is to resolve how viral genetic change drives disease emergence. The objective of the proposed research is to characterize evolution in dengue viruses isolated from epidemics relative to their endemic forms and confirm the impact of genetic changes in experimental models, the rationale being that identification of such viral genetic changes and their mechanisms of fixation will illuminate determinants of dengue epidemic potential and ultimately pathogenesis.
Specific Aim 1 : Determine the evolution of DENV between endemic and epidemic transmission phases to identify synapomorphies of higher epidemic potential.
Specific Aim 2 : Confirm the relationship between genetic changes in DENV epidemic strains and their phenotypic effects in in vitro models.
Specific Aim 3 : Confirm the relationship between genetic changes in DENV epidemic strains and their phenotypic effects in in vivo models

Public Health Relevance

This research is highly relevant in that by clarifying the evolutionary mechanisms behind increasing epidemic severity in DENV, it elucidates evolution's role in disease emergence in general, especially important given the many vector-borne and zoonotic infectious diseases recently threatening the US (e.g., SARS, West Nile Virus, Avian Influenza, and HIV).

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Irvine
United States
Zip Code
Torres, Rodrigo; Lan, Benson; Latif, Yama et al. (2014) Structural snapshots along the reaction pathway of Yersinia pestis RipA, a putative butyryl-CoA transferase. Acta Crystallogr D Biol Crystallogr 70:1074-85
Houghton, Raymond L; Reed, Dana E; Hubbard, Mark A et al. (2014) Development of a prototype lateral flow immunoassay (LFI) for the rapid diagnosis of melioidosis. PLoS Negl Trop Dis 8:e2727
Strotmeier, Jasmin; Mahrhold, Stefan; Krez, Nadja et al. (2014) Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A. FEBS Lett 588:1087-93
Koellhoffer, Jayne F; Dai, Zhou; Malashkevich, Vladimir N et al. (2014) Structural characterization of the glycoprotein GP2 core domain from the CAS virus, a novel arenavirus-like species. J Mol Biol 426:1452-68
Bennett, Shannon N; Gu, Se Hun; Kang, Hae Ji et al. (2014) Reconstructing the evolutionary origins and phylogeography of hantaviruses. Trends Microbiol 22:473-82
Burtnick, Mary N; Brett, Paul J; DeShazer, David (2014) Proteomic analysis of the Burkholderia pseudomallei type II secretome reveals hydrolytic enzymes, novel proteins, and the deubiquitinase TssM. Infect Immun 82:3214-26
Koskiniemi, Sanna; Garza-Sánchez, Fernando; Sandegren, Linus et al. (2014) Selection of orphan Rhs toxin expression in evolved Salmonella enterica serovar Typhimurium. PLoS Genet 10:e1004255
Sabouri, Amir H; Marcondes, Maria Cecilia Garibaldi; Flynn, Claudia et al. (2014) TLR signaling controls lethal encephalitis in WNV-infected brain. Brain Res 1574:84-95
Vigant, Frederic; Hollmann, Axel; Lee, Jihye et al. (2014) The rigid amphipathic fusion inhibitor dUY11 acts through photosensitization of viruses. J Virol 88:1849-53
Relman, David A (2014) "Inconvenient truths" in the pursuit of scientific knowledge and public health. J Infect Dis 209:170-2

Showing the most recent 10 out of 317 publications