Arena-viruses are rodent-borne pathogens that cause significant morbidity and mortality in humans. Pathogenic arenaviruses include Lassa (LASV), lymphocytic choriomeningitis (LCMV), Junin (JUNV), Machupo (MACV), Guanarito (GTOV), Sabia (SABV) and Whitewater Arroyo (WWAV) viruses. Following human infection with the Old World arenaviruses LCMV or LASV, cellular immunity plays a pivotal role in viral clearance and protective immunity. Therefore, it is important that sensitive reagents to measure the cellmediated immune response in the context of human infection or in response to vaccine candidates are developed. The identification of HLA-restricted epitopes is required to develop assays that can be used to determine the quality of immune responses, define correlates of protection and immunopathology, and ultimately guide the selection of candidate vaccines. In order to identify human CD8+ T cell epitopes from pathogens, we have established an approach that utilizes bioinformatic predictions to identify candidate epitopes, in vitro MHC binding assays and in vivo immunogenicity studies in HLA transgenic mice to validate epitopes, and vaccination studies to evaluate whether epitopes are protective against viral challenge. Over the few past years, we used this approach to identify the first human CD8+ T cell epitopes from LCMV (1,2,3). In subsequent studies we have shown that immunization of HLA-A2 transgenic mice with one of these epitopes, GPC[447,455] led to significant reductions in viral titer following challenge with LCMV and protected animals from lethal disease.

Public Health Relevance

Available options for Vaccines and antivirals effective against arenaviruses are extremely limited. This project proposes to refine the development and delivery of broad spectrum vaccines against the pathogenic arenaviruses of the Old World and New World. We propose also to expand on our findings that drugs targeted at the common conserved termini of the arenavirus genome are effective antivirals. These studies will bring us closer to the goal of viable antivirals and vaccines against arenaviruses.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Irvine
United States
Zip Code
Torres, Rodrigo; Lan, Benson; Latif, Yama et al. (2014) Structural snapshots along the reaction pathway of Yersinia pestis RipA, a putative butyryl-CoA transferase. Acta Crystallogr D Biol Crystallogr 70:1074-85
Houghton, Raymond L; Reed, Dana E; Hubbard, Mark A et al. (2014) Development of a prototype lateral flow immunoassay (LFI) for the rapid diagnosis of melioidosis. PLoS Negl Trop Dis 8:e2727
Strotmeier, Jasmin; Mahrhold, Stefan; Krez, Nadja et al. (2014) Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A. FEBS Lett 588:1087-93
Koellhoffer, Jayne F; Dai, Zhou; Malashkevich, Vladimir N et al. (2014) Structural characterization of the glycoprotein GP2 core domain from the CAS virus, a novel arenavirus-like species. J Mol Biol 426:1452-68
Bennett, Shannon N; Gu, Se Hun; Kang, Hae Ji et al. (2014) Reconstructing the evolutionary origins and phylogeography of hantaviruses. Trends Microbiol 22:473-82
Burtnick, Mary N; Brett, Paul J; DeShazer, David (2014) Proteomic analysis of the Burkholderia pseudomallei type II secretome reveals hydrolytic enzymes, novel proteins, and the deubiquitinase TssM. Infect Immun 82:3214-26
Koskiniemi, Sanna; Garza-Sánchez, Fernando; Sandegren, Linus et al. (2014) Selection of orphan Rhs toxin expression in evolved Salmonella enterica serovar Typhimurium. PLoS Genet 10:e1004255
Sabouri, Amir H; Marcondes, Maria Cecilia Garibaldi; Flynn, Claudia et al. (2014) TLR signaling controls lethal encephalitis in WNV-infected brain. Brain Res 1574:84-95
Vigant, Frederic; Hollmann, Axel; Lee, Jihye et al. (2014) The rigid amphipathic fusion inhibitor dUY11 acts through photosensitization of viruses. J Virol 88:1849-53
Relman, David A (2014) "Inconvenient truths" in the pursuit of scientific knowledge and public health. J Infect Dis 209:170-2

Showing the most recent 10 out of 317 publications