The botulinum neurotoxins, BoNTs, produced by Clostridium botulinum are among the most potent toxins known to man. The Centers for Disease Control and Prevention (CDC) has classified it as a potential bio-weapon, Category A, because of its extreme potency and lethality, its ease of production and transport, and the need for prolonged intensive care among affected persons. This project focuses on generating monoclonal antibodies to be used in the development of diagnostic assays and devices and to be used as a general tool for understanding toxin structure-function relationships. The goal is to generate mAbs that recognize all neurotoxin subtypes multiple serotypes. Studies will be conducted to understand the role of antibody epitopes on toxin recognition and to use this knowledge to engineer mAbs allowing more sensitive toxin detection or greater therapeutic efficacy. Antibodies will be generated against the heavy chain domains as part of a collaboration with Project 3.1 with the aim of understanding the receptor recognition and binding process and in collaboration with Project 3.3 with the aim of understanding the translocation process. mAbs against the light chain domain will be generated for use in assays and diagnostic devices. Samples generated will be made available to PSWRCE collaborators as well as to others in the biodefense consortium.

Public Health Relevance

The seven serotypes of BoNTs have been classified as category A biothreats by the CDC. Generation of high affinity antibodies recognizing all toxin variants will allow for broader and more sensitive toxin detection and neutralization. Uses include toxin detection, more sensitive and earlier diagnosis of botulism, and more effective treatments after not only biothreat exposure, but for foodborne and infant botulism, as well as botulism resulting from overdosing of therapeutic toxins.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI065359-09
Application #
8462545
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
9
Fiscal Year
2013
Total Cost
$264,105
Indirect Cost
$25,406
Name
University of California Irvine
Department
Type
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Tsai, Wen-Yang; Youn, Han Ha; Tyson, Jasmine et al. (2018) Use of Urea Wash ELISA to Distinguish Zika and Dengue Virus Infections. Emerg Infect Dis 24:1355-1359
Thongsripong, Panpim; Chandler, James Angus; Green, Amy B et al. (2018) Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases. Ecol Evol 8:1352-1368
Katzelnick, Leah C; Ben-Shachar, Rotem; Mercado, Juan Carlos et al. (2018) Dynamics and determinants of the force of infection of dengue virus from 1994 to 2015 in Managua, Nicaragua. Proc Natl Acad Sci U S A 115:10762-10767
Clemens, Daniel L; Lee, Bai-Yu; Horwitz, Marcus A (2018) The Francisella Type VI Secretion System. Front Cell Infect Microbiol 8:121
Huwyler, Camille; Heiniger, Nadja; Chomel, Bruno B et al. (2017) Dynamics of Co-Infection with Bartonella henselae Genotypes I and II in Naturally Infected Cats: Implications for Feline Vaccine Development. Microb Ecol 74:474-484
Norris, Michael H; Heacock-Kang, Yun; Zarzycki-Siek, Jan et al. (2017) Burkholderia pseudomallei natural competency and DNA catabolism: Identification and characterization of relevant genes from a constructed fosmid library. PLoS One 12:e0189018
Marques, Adriana R; Yang, Xiuli; Smith, Alexis A et al. (2017) Citrate Anticoagulant Improves the Sensitivity of Borreliella (Borrelia) burgdorferi Plasma Culture. J Clin Microbiol 55:3297-3299
Nualnoi, Teerapat; Norris, Michael H; Tuanyok, Apichai et al. (2017) Development of Immunoassays for Burkholderia pseudomallei Typical and Atypical Lipopolysaccharide Strain Typing. Am J Trop Med Hyg 96:358-367
Parameswaran, Poornima; Wang, Chunling; Trivedi, Surbhi Bharat et al. (2017) Intrahost Selection Pressures Drive Rapid Dengue Virus Microevolution in Acute Human Infections. Cell Host Microbe 22:400-410.e5
Bortell, Nikki; Flynn, Claudia; Conti, Bruno et al. (2017) Osteopontin Impacts West Nile virus Pathogenesis and Resistance by Regulating Inflammasome Components and Cell Death in the Central Nervous System at Early Time Points. Mediators Inflamm 2017:7582437

Showing the most recent 10 out of 467 publications