The innate immune response is a primary defense mechanism to combat microbial infection. In addition to providing necessary cues for the initiation of an adaptive immune response, activation of the innate signaling pathways triggers immediate and localized defensive activities. An important component of this response is the induction of proteins that have direct antiviral activities. Since viruses have developed molecular strategies to circumvent these activities, these restriction factor proteins impose strong constraints on viral evolution. Elucidate a global understanding of the molecular circuits that underlie these innate activities would provide opportunities for the development of novel antiviral therapeutics targeting this critical viral-host interface. Dengue (DENV) and West Nile (WNV) virus are members of the Flaviviridae family of positive strand RNA viruses. These viruses can activate Pattern Recognition Receptors, such as TLR3, TLR7, or RIG-I, which specifically respond to molecular signatures harbored by these viruses. Additionally, both dengue and West Nile virus harbor proteins that function to inhibit downstream type-1 interferon signaling (i.e. NS4B). This strongly suggests that activation of type-1 interferon induces the expression of target genes that directly impede the viruses'ability to effectively replicate. The goal of the proposal is to integrate two systems-level analytical technique, genome-wide mammalian genetic analysis and affinity purification mass spectrometry, to establish a global understanding of the host-pathogen molecular networks that underlie both innate immune-mediated restriction of viral replication, and viral countermeasures to these activities. A comprehensive, systems-level, analysis of these virus-host interactions will provide significant new molecular insight into the network infrastructure is regulated by the innate immune response to RNA virus infection.

Public Health Relevance

Human cells naturally harbor proteins that can combat virus infection, however, viruses often have developed molecular strategies to escape their activities. The goal of this proposal is to perform a comprehensive survey of human proteins that can block the replication of dengue and West Nile viruses, and to understand how they physically associate with these viruses. The results of this genome-wide analysis will provide new opportunities for the development of antiviral therapeutics that function by specifically reinstating the ability of our cells to combat viral infection.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI081680-05
Application #
8436328
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
5
Fiscal Year
2013
Total Cost
$502,956
Indirect Cost
$86,942
Name
Oregon Health and Science University
Department
Type
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Kebaabetswe, Lemme P; Haick, Anoria K; Gritsenko, Marina A et al. (2015) Proteomic analysis reveals down-regulation of surfactant protein B in murine type II pneumocytes infected with influenza A virus. Virology 483:96-107
Gralinski, Lisa E; Ferris, Martin T; Aylor, David L et al. (2015) Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross. PLoS Genet 11:e1005504
Okumura, Atsushi; Rasmussen, Angela L; Halfmann, Peter et al. (2015) Suppressor of Cytokine Signaling 3 Is an Inducible Host Factor That Regulates Virus Egress during Ebola Virus Infection. J Virol 89:10399-406
Sanchez, Erica L; Lagunoff, Michael (2015) Viral activation of cellular metabolism. Virology 479-480:609-18
LaBeaud, A Desiree; Banda, Tamara; Brichard, Julie et al. (2015) High rates of o'nyong nyong and Chikungunya virus transmission in coastal Kenya. PLoS Negl Trop Dis 9:e0003436
Rasmussen, Angela L; Tchitchek, Nicolas; Safronetz, David et al. (2015) Delayed inflammatory and cell death responses are associated with reduced pathogenicity in Lujo virus-infected cynomolgus macaques. J Virol 89:2543-52
Fontaine, Krystal A; Sanchez, Erica L; Camarda, Roman et al. (2015) Dengue virus induces and requires glycolysis for optimal replication. J Virol 89:2358-66
Davis, Zoe H; Verschueren, Erik; Jang, Gwendolyn M et al. (2015) Global mapping of herpesvirus-host protein complexes reveals a transcription strategy for late genes. Mol Cell 57:349-60
Mirrashidi, Kathleen M; Elwell, Cherilyn A; Verschueren, Erik et al. (2015) Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection. Cell Host Microbe 18:109-21
Kell, Alison M; Gale Jr, Michael (2015) RIG-I in RNA virus recognition. Virology 479-480:110-21

Showing the most recent 10 out of 122 publications