N5. EDUCATION AND OUTREACH CORE N5A. CANCER SYSTEMS BIOLOGY EDUCATION AT MIT The MIT Tumor Cell Networks Center devotes high priority to training students and postdocs at the interface engaging cancer biology with computational modeling approaches. While our current faculty members are active in this emerging field, the future of cancer biology more critically depends on educating a new generation of scientists to lead advances in this field. Our strategy is to encourage student/postdoc trainees to have joint mentorship from supervisors whose core expertise straddle the computational-biological interface. We endeavor to attract students/postdocs from both molecular/cellular biology and computerscience/ engineering and place them together in joint research projects with faculty members from these two broad areas. N5B. OUTREACH The ICBP grant has had a significant impact within the MIT campus community by catalyzing interactions between the systems biology and cancer biology communities. One example of the new communication between these communities was the choice to focus the annual MIT Center for Cancer Research Symposium on the "Systems Biology of Cancer" in 2008. The program for this Symposium (with over 1,000 attendees) featured outstanding investigators from a number of institutions across the USA and Canada bringing integrative systems approaches to bear on basic and clinical science facets in fundamental understanding, diagnosis and treatment of cancer. A striking manifestation of our marrying the cancer and systems biology communities was the evolution of the MIT Center for Cancer Research into the new Koch Institute for Integrative Cancer Research - doubled in size, now including a roughly equal number of members from MIT science and engineering departments.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA112967-09
Application #
8460962
Study Section
Special Emphasis Panel (ZCA1-SRLB-C)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
9
Fiscal Year
2013
Total Cost
$163,052
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Lescarbeau, Rebecca S; Lei, Liang; Bakken, Katrina K et al. (2016) Quantitative Phosphoproteomics Reveals Wee1 Kinase as a Therapeutic Target in a Model of Proneural Glioblastoma. Mol Cancer Ther 15:1332-43
Oudin, Madeleine J; Miller, Miles A; Klazen, Joelle A Z et al. (2016) MenaINV mediates synergistic cross-talk between signaling pathways driving chemotaxis and haptotaxis. Mol Biol Cell 27:3085-3094
Tape, Christopher J; Ling, Stephanie; Dimitriadi, Maria et al. (2016) Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation. Cell 165:910-20
Lescarbeau, Rebecca S; Lei, Liang; Bakken, Katrina K et al. (2016) Quantitative phosphoproteomics reveals Wee1 kinase as a therapeutic target in a model of proneural glioblastoma. Mol Cancer Ther :
de Picciotto, Seymour; Dickson, Paige M; Traxlmayr, Michael W et al. (2016) Design Principles for SuCESsFul Biosensors: Specific Fluorophore/Analyte Binding and Minimization of Fluorophore/Scaffold Interactions. J Mol Biol 428:4228-4241
Miller, Miles A; Oudin, Madeleine J; Sullivan, Ryan J et al. (2016) Reduced Proteolytic Shedding of Receptor Tyrosine Kinases Is a Post-Translational Mechanism of Kinase Inhibitor Resistance. Cancer Discov 6:382-99
Tuncbag, Nurcan; Gosline, Sara J C; Kedaigle, Amanda et al. (2016) Network-Based Interpretation of Diverse High-Throughput Datasets through the Omics Integrator Software Package. PLoS Comput Biol 12:e1004879
Carmona, G; Perera, U; Gillett, C et al. (2016) Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE. Oncogene 35:5155-69
Reddy, Raven J; Gajadhar, Aaron S; Swenson, Eric J et al. (2016) Early signaling dynamics of the epidermal growth factor receptor. Proc Natl Acad Sci U S A 113:3114-9
Oudin, Madeleine J; Jonas, Oliver; Kosciuk, Tatsiana et al. (2016) Tumor Cell-Driven Extracellular Matrix Remodeling Drives Haptotaxis during Metastatic Progression. Cancer Discov 6:516-31

Showing the most recent 10 out of 206 publications