Will develop a dynamic model of response to HER family inhibitors in tumors in which HER2 is amplified that encompasses both fast, phosphorylation-based events (on the order of a few minutes) and slower transcriptional and epigenomic processes (on the order of a few days). This model will eventually enable comparative assessment ofthe relative importance of mechanisms of response and resistance and guide development of combinatorial therapeutic strategies to counter resistance. This project is motivated by observations that responses to trastuzumab and lapatinib are not uniform between patients and are frequently not durable. Work in this CCSB project and the general scientific community suggests several mechanisms that may confer resistance including: (a) activating downstream mutations in the PI3K pathway, (b) microenvironment mediated activation of interacting networks, (c) PI3K mediated changes in HERS expression and signaling and (d) transcriptional feedback regulation from response related network elements. An initial dynamic version ofthe model will be developed in collaboration with the MIT CCSB (see letter of collaboration from Dr. Lauffenburger). The model will differ from existing work in three important ways: it will exploit a mathematical separation of time scales for fast and slow dynamics, incorporate underlying genetic aberrations, and include parallel signaling from the microenvironment. Analysis ofthis initial model will be used to help understand the roles of cooperating genetic aberrations, transcriptional and translational regulation, vesicle control and microenvironment in fast and slow dynamic processes. Subsequent versions of the model will build on experimental measurements of temporal biological and molecular responses of HER2+ breast cancer cell lines to HER2 family signaling network inhibitors administered alone and in combination as well as information from Projects 1, 2 and 4 and from the Stanford CCSB's MYC modeling efforts (see letter of collaboration from Dr. Plevritis). A combination of Bayesian network analysis and dynamic modeling will be used to model the unexplored effects of epigenomic modulation of transcription on HER2/3 signaling.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon Health and Science University
United States
Zip Code
Lu, Yiling; Ling, Shiyun; Hegde, Apurva M et al. (2016) Using reverse-phase protein arrays as pharmacodynamic assays for functional proteomics, biomarker discovery, and drug development in cancer. Semin Oncol 43:476-83
Hill, Steven M; Heiser, Laura M; Cokelaer, Thomas et al. (2016) Inferring causal molecular networks: empirical assessment through a community-based effort. Nat Methods 13:310-8
Hines, William C; Kuhn, Irene; Thi, Kate et al. (2016) 184AA3: a xenograft model of ER+ breast adenocarcinoma. Breast Cancer Res Treat 155:37-52
Goodspeed, Andrew; Heiser, Laura M; Gray, Joe W et al. (2016) Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics. Mol Cancer Res 14:3-13
Chen, Mo; Peters, Alec; Huang, Tao et al. (2016) Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target. Mini Rev Med Chem 16:391-403
Chen, Tenghui; Wang, Zixing; Zhou, Wanding et al. (2016) Hotspot mutations delineating diverse mutational signatures and biological utilities across cancer types. BMC Genomics 17 Suppl 2:394
Hu, Zhi; Mao, Jian-Hua; Curtis, Christina et al. (2016) Genome co-amplification upregulates a mitotic gene network activity that predicts outcome and response to mitotic protein inhibitors in breast cancer. Breast Cancer Res 18:70
Chang, Young Hwan; Dobbe, Roel; Bhushan, Palak et al. (2016) Reconstruction of Gene Regulatory Networks based on Repairing Sparse Low-rank Matrices. IEEE/ACM Trans Comput Biol Bioinform 13:767-777
Park, Yun-Yong; Sohn, Bo Hwa; Johnson, Randy L et al. (2016) Yes-associated protein 1 and transcriptional coactivator with PDZ-binding motif activate the mammalian target of rapamycin complex 1 pathway by regulating amino acid transporters in hepatocellular carcinoma. Hepatology 63:159-72
Seviour, E G; Sehgal, V; Lu, Y et al. (2016) Functional proteomics identifies miRNAs to target a p27/Myc/phospho-Rb signature in breast and ovarian cancer. Oncogene 35:691-701

Showing the most recent 10 out of 183 publications