Three of the critical issues in modern cancer research and evolutionary theory include (a) an understanding of the progression of mutations over time, (b) an identification of the cell of origin of these tumors, (c) and the differential response of cancer cell populations to therapy. In this grant proposal, we have created a consortium of investigators that will blend mathematical modeling of the evolutionary dynamics of cancer cells with in vitro and in vivo modeling to validate, and iteratively revise the mathematical frameworks. In the first project we will use evolutionary mathematical modeling to predict the order in which mutations are accumulated during glioma and leukemia development. We will validate our predictions with genetically engineered mouse modeling of these tumors where the temporal order of these mutations is experimentally manipulable. In the second project we will use evolutionary mathematical modeling to predict the most likely cell of origin for gliomas and leukemias. Again, we will use mouse modeling of gliomagenensis and leukemiagenesis that allows us to validate and refine the mathematical models and determine what oncogenes will in fact allow the predicted cells to serve as the origin for these tumors. In the final project, we will use evolutionary theory to describe the differential response to targeted therapy in lung adenocarcinomas and to radiation therapy in medulloblastomas. We will use the mathematical framework to predict the risk of resistance emerging during a particular dosing strategy and determine the optimal approach that will maximally prevent the evolution of resistance. The mathematical framework will again be revised and validated with in vitro and in vivo modeling. These three projects utilize a single cell measurement core facility that allows simultaneous measurements of individual cells for multiple values that impact the mathematical modeling parameters. In the process, we will build a team of interactive investigators that work with other PS-OCs, the NIH, and the outside biologic and mathematical communities. In addition, we have established core education and training curricula to train the next generation of investigators at the interface of these two disciplines.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-9 (O1))
Program Officer
Kuhn, Nastaran Z
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Wee, Boyoung; Pietras, Alexander; Ozawa, Tatsuya et al. (2016) ABCG2 regulates self-renewal and stem cell marker expression but not tumorigenicity or radiation resistance of glioma cells. Sci Rep 6:25956
Badri, H; Pitter, K; Holland, E C et al. (2016) Optimization of radiation dosing schedules for proneural glioblastoma. J Math Biol 72:1301-36
Amato, Katherine R; Wang, Shan; Tan, Li et al. (2016) EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Res 76:305-18
Bolouri, Hamid; Zhao, Lue Ping; Holland, Eric C (2016) Big data visualization identifies the multidimensional molecular landscape of human gliomas. Proc Natl Acad Sci U S A 113:5394-9
Garvey, Colleen M; Spiller, Erin; Lindsay, Danika et al. (2016) A high-content image-based method for quantitatively studying context-dependent cell population dynamics. Sci Rep 6:29752
Xue, Qiong; Lu, Yao; Eisele, Markus R et al. (2015) Analysis of single-cell cytokine secretion reveals a role for paracrine signaling in coordinating macrophage responses to TLR4 stimulation. Sci Signal 8:ra59
Kleppe, Maria; Kwak, Minsuk; Koppikar, Priya et al. (2015) JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov 5:316-31
Meador, Catherine B; Jin, Hailing; de Stanchina, Elisa et al. (2015) Optimizing the sequence of anti-EGFR-targeted therapy in EGFR-mutant lung cancer. Mol Cancer Ther 14:542-52
Foo, Jasmine; Liu, Lin L; Leder, Kevin et al. (2015) An Evolutionary Approach for Identifying Driver Mutations in Colorectal Cancer. PLoS Comput Biol 11:e1004350
Michor, Franziska; Beal, Kathryn (2015) Improving Cancer Treatment via Mathematical Modeling: Surmounting the Challenges Is Worth the Effort. Cell 163:1059-63

Showing the most recent 10 out of 154 publications