This overall goal of our Proposed Center is to use a physics-based approach towards understanding the evolution of cancer resistance. From an experimental point of view, this will be accomplished using the "microhabitat patch" (MHP) technology developed on a microfluidic chip platform at Princeton. This, experimental technique is central to all aspects of our proposal as it allows us to experimentally "tune" parameters which affect cell migration and evolution and then watch the evolution of interacting populations of cells as they move and evolve in space and time. The main focus of this proposed section of our Center is to rapidly extend this technology to mammalian cells (from initial studies in bacteria), and to develop additional capabilities for such MHP's for studying how cancer cells respond to stress. These include 2-dimensional or 3-dimenstional arrays in addition to 1-dimension, the ability to tune the coupling parameters between MHP's and between MHP's and food supplies as a function of time, and to adjust the local temperature as a function of time. We will also develop approaches for extracting cells from chips after evolution experiments for off-chip genomic analysis, and eventually methods for on-chip genomic analysis. Once these technologies and capabilities are invented and developed, they will be transferred to the Princeton Microfluidic Shared Resource (Section N4) so that all Center members (cancer biologists, e.g.) and external researchers such as those on pilot or transnetwork projects can use the new capabilities.

Public Health Relevance

The main focus of this proposed section of our Center is to rapidly extend this technology to mammalian cells (from initial studies in bacteria), and to develop additional capabilities for such MHP's for studying how cancer cells respond to stress.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143803-05
Application #
8535646
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2013
Total Cost
$199,351
Indirect Cost
Name
Princeton University
Department
Type
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08544
van Vliet, Simon; Hol, Felix J H; Weenink, Tim et al. (2014) The effects of chemical interactions and culture history on the colonization of structured habitats by competing bacterial populations. BMC Microbiol 14:116
Yang, Kimberline R; Mooney, Steven M; Zarif, Jelani C et al. (2014) Niche inheritance: a cooperative pathway to enhance cancer cell fitness through ecosystem engineering. J Cell Biochem 115:1478-85
Wan, Liling; Hu, Guohong; Wei, Yong et al. (2014) Genetic ablation of metadherin inhibits autochthonous prostate cancer progression and metastasis. Cancer Res 74:5336-47
DeFilippis, Rosa Anna; Fordyce, Colleen; Patten, Kelley et al. (2014) Stress signaling from human mammary epithelial cells contributes to phenotypes of mammographic density. Cancer Res 74:5032-44
Lee, Mei-Chong Wendy; Lopez-Diaz, Fernando J; Khan, Shahid Yar et al. (2014) Single-cell analyses of transcriptional heterogeneity during drug tolerance transition in cancer cells by RNA sequencing. Proc Natl Acad Sci U S A 111:E4726-35
Terada, Naoki; Shiraishi, Takumi; Zeng, Yu et al. (2014) Correlation of Sprouty1 and Jagged1 with aggressive prostate cancer cells with different sensitivities to androgen deprivation. J Cell Biochem 115:1505-15
Chen, Duyu; Jiao, Yang; Torquato, Salvatore (2014) A cellular automaton model for tumor dormancy: emergence of a proliferative switch. PLoS One 9:e109934
Roca, Hernan; Pande, Manjusha; Huo, Jeffrey S et al. (2014) A bioinformatics approach reveals novel interactions of the OVOL transcription factors in the regulation of epithelial - mesenchymal cell reprogramming and cancer progression. BMC Syst Biol 8:29
Fuhrmann, Alexander; Li, Julie; Chien, Shu et al. (2014) Cation type specific cell remodeling regulates attachment strength. PLoS One 9:e102424
Khin, Zayar P; Ribeiro, Maria L C; Jacobson, Timothy et al. (2014) A preclinical assay for chemosensitivity in multiple myeloma. Cancer Res 74:56-67

Showing the most recent 10 out of 46 publications