The goal of the PS-OC initiative is to collectively advance our understanding of the physical laws and principles that shape and govern the emergence of cancer and its behavior at ail scales. The PS-OCs will bring together expert teams from the fields of physics, cancer biology, physical chemistry, mathematics, and engineering to assemble and develop the infrastructure, capabilities, research programs, and the Network required to enable team research converging. the physical sciences with cancer biology. PS-OCs, individually and together, will support and nurture a new trans-disciplinary environment and research that: (1) originates and tests novel, non-traditional physical-sciences based approaches to understanding and controlling cancer;(2) generates orthogonal sets of physical measurements and integrates them with existing knowledge of cancer;and (3) develops and evaluates theoretical physics approaches to provide a comprehensive and dynamic picture of cancer. Ultimately, through coordinated, alternative, trans-Network development and testing of innovative, perhaps non-traditional, approaches to cancer processes, PS-OCs will catalyze and generate new bodies of knowledge and fields of cancer study that identify and define the critical aspects "physics, chemistry, and engineering" that operate at all levels in cancer processes. We are bringing together a cross section of investigators from the Physical and Life Sciences to participate in the center. This includes five Bay Area organizations with globally recognized and long-standing capabilities and interests in the physical sciences, engineering, and cancer research and treatment. We have also recruited clinical investigators from 2 outside institutions to compliment existing expertise and to extend the translational scope of our projects.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
3U54CA143836-05S1
Application #
8915817
Study Section
Special Emphasis Panel (ZCA1-SRLB-9 (O1))
Program Officer
Hanlon, Sean E
Project Start
2009-09-29
Project End
2015-07-31
Budget Start
2013-09-17
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$160,500
Indirect Cost
$60,500
Name
Stanford University
Department
Biomedical Engineering
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Chen, Mo; Peters, Alec; Huang, Tao et al. (2016) Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target. Mini Rev Med Chem 16:391-403
Laklai, Hanane; Miroshnikova, Yekaterina A; Pickup, Michael W et al. (2016) Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med 22:497-505
Gao, Sizhi P; Chang, Qing; Mao, Ninghui et al. (2016) JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors. Sci Signal 9:ra33
Ou, Guanqing; Thakar, Dhruv; Tung, Jason C et al. (2016) Visualizing mechanical modulation of nanoscale organization of cell-matrix adhesions. Integr Biol (Camb) 8:795-804
Northcott, Josette M; Northey, Jason J; Barnes, J Matthew et al. (2015) Fighting the force: Potential of homeobox genes for tumor microenvironment regulation. Biochim Biophys Acta 1855:248-53
Nickerson, Andrew; Huang, Tao; Lin, Li-Jung et al. (2015) Photoactivated Localization Microscopy with Bimolecular Fluorescence Complementation (BiFC-PALM). J Vis Exp :e53154
Chang, Ching-Wei; Kumar, Sanjay (2015) Differential Contributions of Nonmuscle Myosin II Isoforms and Functional Domains to Stress Fiber Mechanics. Sci Rep 5:13736
Lee, Somin Eunice; Chen, Qian; Bhat, Ramray et al. (2015) Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules. Nano Lett 15:4564-70
Tung, Jason C; Barnes, J Matthew; Desai, Shraddha R et al. (2015) Tumor mechanics and metabolic dysfunction. Free Radic Biol Med 79:269-80
Diamond, Marc I; Cai, Shirong; Boudreau, Aaron et al. (2015) Subcellular localization and Ser-137 phosphorylation regulate tumor-suppressive activity of profilin-1. J Biol Chem 290:9075-86

Showing the most recent 10 out of 124 publications