Project 4 is dealing with various physical barriers that chemotherapeutical agent administered orally meets on its way to be systemically absorbed and to reach the target tumor tissue. These barriers include for example: changes in pH across the gastrointestinal (Gl) tract, enzymatic degradation, epithelial transport through different mechanisms. To study and tackle these barriers we will use our engineered polymeric carriers. This project is led by Dr. Nicholas Peppas using animal models of Dr. Fidler as described in Project 1. Dr. Nicholas Peppas is a Professor in the Departments of Chemical, Biomedical Engineering and Pharmaceutics and Fletcher S. Pratt Chair of Engineering at UTA. Dr. Peppas is a world leader in the fields of bionanotechnology and molecular recognition processes, nanodevices for controlled drug delivery, and intelligent biomaterials. Among other medical devices, he has developed, patented and/or commercialized intraocular lenses, materials for vocal cord restoration, nanodelivery systems for oral administration of insulin to type I diabetic patients, and systems for oral delivery of calcitonin for treatment of postmenopausal women suffering from osteoporosis. Dr. Peppas is a member of the National Academy of Engineering, a member of the Institute of Medicine of the National Academy of Sciences and the French Academy of Pharmacy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143837-07
Application #
8755652
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
7
Fiscal Year
2014
Total Cost
$5,467
Indirect Cost
$18,060
Name
Methodist Hospital Research Institute
Department
Type
DUNS #
185641052
City
Houston
State
TX
Country
United States
Zip Code
77030
Pandolfi, Laura; Minardi, Silvia; Taraballi, Francesca et al. (2016) Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering. J Tissue Eng 7:2041731415624668
Ware, Matthew J; Keshishian, Vazrik; Law, Justin J et al. (2016) Generation of an in vitro 3D PDAC stroma rich spheroid model. Biomaterials 108:129-42
Lapin, Norman A; Krzykawska-Serda, Martyna; Ware, Matthew J et al. (2016) Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields. Cancer Nanotechnol 7:5
Tanei, Tomonori; Leonard, Fransisca; Liu, Xuewu et al. (2016) Redirecting Transport of Nanoparticle Albumin-Bound Paclitaxel to Macrophages Enhances Therapeutic Efficacy against Liver Metastases. Cancer Res 76:429-39
McConnell, Kellie I; Shamsudeen, Sabeel; Meraz, Ismail M et al. (2016) Reduced Cationic Nanoparticle Cytotoxicity Based on Serum Masking of Surface Potential. J Biomed Nanotechnol 12:154-64
Scott, Bronwyn; Shen, Jianliang; Nizzero, Sara et al. (2016) A pyruvate decarboxylase-mediated therapeutic strategy for mimicking yeast metabolism in cancer cells. Pharmacol Res 111:413-21
Mi, Yu; Mu, Chaofeng; Wolfram, Joy et al. (2016) A Micro/Nano Composite for Combination Treatment of Melanoma Lung Metastasis. Adv Healthc Mater 5:936-46
Corbo, Claudia; Molinaro, Roberto; Parodi, Alessandro et al. (2016) The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (Lond) 11:81-100
Liu, Zongbin; Han, Xin; Qin, Lidong (2016) Recent Progress of Microfluidics in Translational Applications. Adv Healthc Mater 5:871-88
Leonard, Fransisca; Godin, Biana (2016) 3D In Vitro Model for Breast Cancer Research Using Magnetic Levitation and Bioprinting Method. Methods Mol Biol 1406:239-51

Showing the most recent 10 out of 226 publications