Computational modeling is crucial in bridging experimental biology and insights from physics. Progression of cancer, whether at the intra- or inter-cellular scales, is a prime example of complexity, with system-level behavior emerging from the interactions of large numbers of smaller components. Therefore, in applying the quantitative methodologies from physics, it will be necessary to invoke large-scale computational models. The Center for Biological Physics (CBP) at ASU has significant faculty expertise in computational modeling of biological systems, ranging from protein folding, to cell biomechanics, to multicellular development. The Director of the CBP, Dr. Timothy Newman, will serve two key roles. First, he will apply his own simulation platform - the Subcellular Element Model (SEM) - to projects 1 and 3 of this proposal. The SEM will be used to gauge cell biomechanics under perturbation from an AFM tip (project 1), and be used to infer mutations in cytoskeletal properties from pathological cell and nuclear morphologies (project 3). Second, Newman will help coordinate the future use of theoretical expertise within the CBP with other Centers within the network. The large-scale computational demands of this Core will be provided by the ASU High Performance Computing Initiative (HPCI), directed by Dr. Daniel Stanzione. The HPCI provides nearly 5000 nodes and vast data storage services. The HPCI also provides expert algorithm development services from its team of software specialists.

Public Health Relevance

Cancer progression is a complex and multi-scale process. Large-scale computational modeling of intracellular biomechanics, and multicellular tumor growth, provides a systematic way to bridge experimental results and biological intuition at different scales.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-9 (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Arizona State University-Tempe Campus
United States
Zip Code
Shiovitz, Stacey; Bertagnolli, Monica M; Renfro, Lindsay A et al. (2014) CpG island methylator phenotype is associated with response to adjuvant irinotecan-based therapy for stage III colon cancer. Gastroenterology 147:637-45
Yu, M; Trobridge, P; Wang, Y et al. (2014) Inactivation of TGF-* signaling and loss of PTEN cooperate to induce colon cancer in vivo. Oncogene 33:1538-47
Luo, Yanxin; Wong, Chao-Jen; Kaz, Andrew M et al. (2014) Differences in DNA methylation signatures reveal multiple pathways of progression from adenoma to colorectal cancer. Gastroenterology 147:418-29.e8
Kaz, Andrew M; Grady, William M (2014) Epigenetic biomarkers in esophageal cancer. Cancer Lett 342:193-9
Codomo, Christine A; Furuyama, Takehito; Henikoff, Steven (2014) CENP-A octamers do not confer a reduction in nucleosome height by AFM. Nat Struct Mol Biol 21:4-5
Yang, Fan; Teves, Sheila S; Kemp, Christopher J et al. (2014) Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta 1845:84-9
Zentner, Gabriel E; Henikoff, Steven (2014) High-resolution digital profiling of the epigenome. Nat Rev Genet 15:814-27
Swygert, Sarah G; Manning, Benjamin J; Senapati, Subhadip et al. (2014) Solution-state conformation and stoichiometry of yeast Sir3 heterochromatin fibres. Nat Commun 5:4751
Grady, William M; Pritchard, Colin C (2014) Molecular alterations and biomarkers in colorectal cancer. Toxicol Pathol 42:124-39
Khatayevich, Dmitriy; Page, Tamon; Gresswell, Carolyn et al. (2014) Selective detection of target proteins by peptide-enabled graphene biosensor. Small 10:1505-13, 1504

Showing the most recent 10 out of 22 publications