The scientific and educational concepts stemming from the research conducted in the Center will not be conventional in physics or in cancer biology. Therefore, we will adopt a proactive, multifaceted approach for outreach activities and results dissemination. The overall mission of the Outreach and Dissemination Unit is to disseminate research results, as well educational concepts resulting from the Center's activities and outreach to various academic, industrial, and government communities. The outreach efforts of the Center for Cancer Physics will include the following components: (1) the Seminar Series on the Physics of Cancer (2) the Annual Two-Day Symposium/Workshop, (3) Web-Based Modules, (4) the Center Website, (5) the Center Newsletter (6) Video-Based Research and Educational Modules, (7) Outreach through Pilot Projects, (8) the Center Tool Repository, (9) Industrial and National Labs Outreach, (10) the Database of Students in the Center, and (11) the Physics of Cancer """"""""Roadshow"""""""", described below:

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
Park, JinSeok; Kim, Deok-Ho; Kim, Hong-Nam et al. (2016) Directed migration of cancer cells guided by the graded texture of the underlying matrix. Nat Mater 15:792-801
Zhang, Kun; Grither, Whitney R; Van Hove, Samantha et al. (2016) Mechanical signals regulate and activate SNAIL1 protein to control the fibrogenic response of cancer-associated fibroblasts. J Cell Sci 129:1989-2002
He, Lijuan; Chen, Weitong; Wu, Pei-Hsun et al. (2016) Local 3D matrix confinement determines division axis through cell shape. Oncotarget 7:6994-7011
Hielscher, Abigail; Ellis, Kim; Qiu, Connie et al. (2016) Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis. PLoS One 11:e0147600
Ruhland, Megan K; Loza, Andrew J; Capietto, Aude-Helene et al. (2016) Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun 7:11762
Luo, Xianmin; Fu, Yujie; Loza, Andrew J et al. (2016) Stromal-Initiated Changes in the Bone Promote Metastatic Niche Development. Cell Rep 14:82-92
Lee, Pilhwa; Wolgemuth, Charles W (2016) Physical Mechanisms of Cancer in the Transition to Metastasis. Biophys J 111:256-66
Semenza, Gregg L (2016) Novel strategies for cancer therapy. J Mol Med (Berl) 94:119-20
Semenza, Gregg L (2016) The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochim Biophys Acta 1863:382-91
Lan, Tian; Cheng, Kai; Ren, Tina et al. (2016) Displacement correlations between a single mesenchymal-like cell and its nucleus effectively link subcellular activities and motility in cell migration analysis. Sci Rep 6:34047

Showing the most recent 10 out of 170 publications