Interstitial flow, varying from nearly zero in the center of tumor tissue to 4 micrometers/second in the periphery, modulates tumor cell growth and metastasis. Tumor cells located in the center of tumor are also subjected to a hypoxic microenvironment, which alters apoptotic, cell cycle and glycosylation pathways. Glycosylation is intimately involved in all steps of metastatic progression by modulating cadherin homophilic interactions (primary tumor) and selectin-ligand (vasculature) as well as integrin-ligand (intravasation, vasculature and extravasation) binding. The overarching goal of Project 3 is to investigate the effects of mechanical forces in prescribed oxygen tension microenvironments on tumor cell signaling and adhesion/migration using a synergistic combination of experimental and computational methods.
In Aim 1, we will investigate the effects of interstitial fluid flow and hypoxia on the regulation of intracellular signaling. We will also elucidate the combined effects of hypoxia and low fluid flow on the physics of key receptor-ligand interactions during the multi-step metastatic process (Aim 2). We will next study the effects of steric forces during the intravasation and extravasation process on tumor cell migration (Aim 3) and on intracellular signaling (Aim 4).
In Aim 5, we will investigate tumor cell targeting in vivo using (a) radiolabeled antibodies against CD44 variant isoforms (CD44v) and podocalyxin-like protein (PCLP) and (b) quantum dots conjugated with antibodies specific for CD44v and PCLP that are expressed by metastatic tumor cells but not normal blood cells. Linkage to PS-OC:
The specific aims of Project 3 fit the overarching theme of the Center of the role forces in the metastatic cascade;
Aims 1 -5 are synergistically connected to Aims 1 and 2 in Project 1 and Aims 1-4 in Project 2 for further research integration of the Center;all Students and Fellows in the Project will be enrolled in the Center Training Program;this project will make use of the resources provided by the Imaging Core and Microfabrication Core, as well as the Administrative Unit of the Center;cell lines and micromechanical methods will be the same as those used in all projects;computational efforts will be shared among all projects.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143868-05
Application #
8548267
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2013
Total Cost
$351,724
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Park, JinSeok; Kim, Deok-Ho; Kim, Hong-Nam et al. (2016) Directed migration of cancer cells guided by the graded texture of the underlying matrix. Nat Mater 15:792-801
Zhang, Kun; Grither, Whitney R; Van Hove, Samantha et al. (2016) Mechanical signals regulate and activate SNAIL1 protein to control the fibrogenic response of cancer-associated fibroblasts. J Cell Sci 129:1989-2002
He, Lijuan; Chen, Weitong; Wu, Pei-Hsun et al. (2016) Local 3D matrix confinement determines division axis through cell shape. Oncotarget 7:6994-7011
Hielscher, Abigail; Ellis, Kim; Qiu, Connie et al. (2016) Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis. PLoS One 11:e0147600
Ruhland, Megan K; Loza, Andrew J; Capietto, Aude-Helene et al. (2016) Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun 7:11762
Luo, Xianmin; Fu, Yujie; Loza, Andrew J et al. (2016) Stromal-Initiated Changes in the Bone Promote Metastatic Niche Development. Cell Rep 14:82-92
Lee, Pilhwa; Wolgemuth, Charles W (2016) Physical Mechanisms of Cancer in the Transition to Metastasis. Biophys J 111:256-66
Semenza, Gregg L (2016) Novel strategies for cancer therapy. J Mol Med (Berl) 94:119-20
Semenza, Gregg L (2016) The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochim Biophys Acta 1863:382-91
Lan, Tian; Cheng, Kai; Ren, Tina et al. (2016) Displacement correlations between a single mesenchymal-like cell and its nucleus effectively link subcellular activities and motility in cell migration analysis. Sci Rep 6:34047

Showing the most recent 10 out of 170 publications