Protein levels in the cell represent the sum of synthesis and degradation. The protein's (genetically encoded) amino acid sequence specifies not only the protein's structure, but also its lifetime through hidden degradation signals encoded in the sequence. Degradation rates balance gene expression rates and thus represent the second half of the equation that determines the active concentration of proteins. In the same way that aberrant gene expression is linked to cancer, so too is aberrant protein processing or degradation. The identity of a protein given by its amino is also dynamic and a combination of sequence elements encoding a degradation initiation signal and a degradation stop signal control the formation of protein fragments with activities distinct from those of the full length protein. This project will decode the sequence signals that shape the proteome and will determine the mechanical and chemical principles underlying these mechanisms.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143869-04
Application #
8379863
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
4
Fiscal Year
2012
Total Cost
$184,814
Indirect Cost
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Serebryannyy, Leonid A; Yemelyanov, Alex; Gottardi, Cara J et al. (2017) Nuclear ?-catenin mediates the DNA damage response via ?-catenin and nuclear actin. J Cell Sci 130:1717-1729
Voong, Lilien N; Xi, Liqun; Sebeson, Amy C et al. (2016) Insights into Nucleosome Organization in Mouse Embryonic Stem Cells through Chemical Mapping. Cell 167:1555-1570.e15
Serebryannyy, Leonid A; Cruz, Christina M; de Lanerolle, Primal (2016) A Role for Nuclear Actin in HDAC 1 and 2 Regulation. Sci Rep 6:28460
Hill, Steven M; Heiser, Laura M; Cokelaer, Thomas et al. (2016) Inferring causal molecular networks: empirical assessment through a community-based effort. Nat Methods 13:310-8
Zhao, Baobing; Mei, Yang; Schipma, Matthew J et al. (2016) Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening. Dev Cell 36:498-510
Serebryannyy, Leonid A; Parilla, Megan; Annibale, Paolo et al. (2016) Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. J Cell Sci 129:3412-25
Chuang, Yishan; Hung, Michelle E; Cangelose, Brianne K et al. (2016) Regulation of the IL-10-driven macrophage phenotype under incoherent stimuli. Innate Immun 22:647-657
Shah, M Y; Martinez-Garcia, E; Phillip, J M et al. (2016) MMSET/WHSC1 enhances DNA damage repair leading to an increase in resistance to chemotherapeutic agents. Oncogene 35:5905-5915
Kreamer, Naomi N; Phillips, Rob; Newman, Dianne K et al. (2015) Predicting the impact of promoter variability on regulatory outputs. Sci Rep 5:18238
Mulligan, Peter J; Chen, Yi-Ju; Phillips, Rob et al. (2015) Interplay of Protein Binding Interactions, DNA Mechanics, and Entropy in DNA Looping Kinetics. Biophys J 109:618-29

Showing the most recent 10 out of 161 publications