An important part of the Center will be its educational component, which will train students and post-doctoral associates at the interfaces between cancer biology, engineering, and experimental and theoretical physics. While current faculty members are active at these interfaces, the future of cancer biology will be shaped by the trainees who will become the leaders in this emerging area over the next years. We firmly believe that a true integration of different disciplines is best achieved by the joint training and supervision of trainees so that they become deeply conversant with both sides of any interface. Accordingly, we place significant emphasis on efforts to attract students both from cancer biology and from the physical sciences including the engineering disciplines and bring them together in joint research projects with faculty members from these broad areas, which are increasingly yielding productive synergies. MIT has strong research and education programs in the biological sciences on the one hand and in the physical/engineering sciences on the other, as well as strong programs in Biological Engineering and Computational and Systems Biology. There is a large pool of excellent students and MIT already has administrative and educational mechanisms in place for encouraging interdisciplinary activities among these students and the respective faculty members. We have structured our program to leverage this advantageous situation. In addition to allocating slots for student support to individual faculty-led projects, we will assist them in recruiting students through a central pool mechanism. We will explicitly solicit engagement of students from departments of computer science and engineering and the physical sciences. We will offer to the projects, the students who show a strong interest in participating in research activities at the interfaces between the physical sciences and cancer biology, either in the context of research projects under this program or in additional research projects that fit within the mission of the Center. MIT has many faculty members and students in these fields. The core group, that nucleated to prepare this application on the basis of existing collaborations and shared interests, represents only a fraction of the larger group that could be attracted to this interesting, important and timely problem. Already, during the course of planning this program, it has become clear that new collaborations and synergies have developed and much of the research proposed here represents new joint ventures. We believe that the SCDC center will nucleate many similar interactions. In order to increase the pool of interested students and faculty, we will sponsor an open seminar series to bring outside experts, including other PS-OCs members from the network, to MIT to present their research and ideas and meet with faculty and students. This is a very effective form of outreach to increase the interest and involvement of faculty and students from diverse disciplines. We will also support development of new courses within MIT. These courses will be designed to enable students to """"""""cross the boundary"""""""" in both directions;helping cancer biologists to become more """"""""numerate"""""""" and those from the physics/engineering side to become more conversant with the complexities of cancer biology. From our experience with graduate students, we are well aware that both these educational goals are necessary to produce productive scientists working at the """"""""cancer biology/physics"""""""" interface. These educational developments will become publicly available through MIT's Open Courseware ( and thus will have impact well beyond our local environment.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
United States
Zip Code
Stockslager, Max A; Bagnall, Josephine Shaw; Hecht, Vivian C et al. (2017) Microfluidic platform for characterizing TCR-pMHC interactions. Biomicrofluidics 11:064103
Chen, Xu; Wu, Qiuxia; Depeille, Philippe et al. (2017) RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma. Cancer Cell 31:685-696.e6
Ksionda, O; Melton, A A; Bache, J et al. (2016) RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene 35:3658-68
Akutagawa, J; Huang, T Q; Epstein, I et al. (2016) Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras. Leukemia 30:1335-43
Stevens, Mark M; Maire, Cecile L; Chou, Nigel et al. (2016) Drug sensitivity of single cancer cells is predicted by changes in mass accumulation rate. Nat Biotechnol 34:1161-1167
Cermak, Nathan; Olcum, Selim; Delgado, Francisco Feijó et al. (2016) High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nat Biotechnol 34:1052-1059
Shaw Bagnall, Josephine; Byun, Sangwon; Miyamoto, David T et al. (2016) Deformability-based cell selection with downstream immunofluorescence analysis. Integr Biol (Camb) 8:654-64
Ramanan, Vyas; Trehan, Kartik; Ong, Mei-Lyn et al. (2016) Viral genome imaging of hepatitis C virus to probe heterogeneous viral infection and responses to antiviral therapies. Virology 494:236-47
Kimmerling, Robert J; Lee Szeto, Gregory; Li, Jennifer W et al. (2016) A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages. Nat Commun 7:10220
McFarland, Christopher D (2016) A modified ziggurat algorithm for generating exponentially- and normally-distributed pseudorandom numbers. J Stat Comput Simul 86:1281-1294

Showing the most recent 10 out of 84 publications