Research Project 2 focuses on investigating the unique features of populations of tumor cells, both in various regions of primary and metastatic tumor, as well as in the bloodstream.
The First Aim i nvolves extensive specimen sampling of a small number of patients, including various regions of the primary tumor such as the leading invasive edge, the tumor epicenter (among others), as well as tumor cells within afferent and efferent blood vessels of the tumor and tumor cells in blood vessels over time. These population sets of cells will be characterized according to features related to metastability, including overall cytomorphologic structure, surface and cytoplasmic evidence of loss of epithelial-ness, live/dead nuclear features, and E- to N-cadherin switching. The resulting data will provide a tumor topology across the human organism and over time, yielding insight into which populations of tumor cells are important in the process of metastasis.
The Second Aim focuses on the third microenvironment, the bloodstream, which is a transient, yet critical environment for cells undergoing hematogenous metastasis. Investigations are directed at the architecture of tumor cell travel groups in the blood, associ ations between CTCs and other nucleated cells in the bloodstrea m including immunologically active cells, scavenger cells (monocytes), and coating cells (platelets) that may play a critical role in CTC survival/destruction, interactions with non-cellular protein components such as those of the coagulation cascade, and m arkers associated with natural killer cell activity. Methodologies include the incorporation of newly developed techniques to study CTCs in human cancer patient blood samples, utilizing fluorescent immunocytochemistry and standard morphologic stains, combined with sophisticated digital imaging strategies and software applications.
The Third Aim will use the data collected in the first two aims along with clinical patient correlation data to robustly simulate the behaviors of cancer cells as they leave the primary tumor and travel through the blood to metastatic sites.

Public Health Relevance

Certain subsets of cells within a tumor are likely responsible for metastatic disease, which is the cause of death in most cancer patients. Measuring variables to identify various unique populations of tumor cells within a malignancy, and learning how each subset functions during the process of metastasis will allow us to manipulate and ideally prevent such travel, thereby blocking the method by which cancer generally kills.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143906-05
Application #
8568054
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
5
Fiscal Year
2013
Total Cost
$302,028
Indirect Cost
$103,957
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
West, Jeffrey; Newton, Paul K (2017) Chemotherapeutic Dose Scheduling Based on Tumor Growth Rates Provides a Case for Low-Dose Metronomic High-Entropy Therapies. Cancer Res 77:6717-6728
Kuhn, P; Keating, S M; Baxter, G T et al. (2017) Lessons Learned: Transfer of the High-Definition Circulating Tumor Cell Assay Platform to Development as a Commercialized Clinical Assay Platform. Clin Pharmacol Ther 102:777-785
Carlsson, Anders; Kuhn, Peter; Luttgen, Madelyn S et al. (2017) Paired High-Content Analysis of Prostate Cancer Cells in Bone Marrow and Blood Characterizes Increased Androgen Receptor Expression in Tumor Cell Clusters. Clin Cancer Res 23:1722-1732
West, Jeffrey; Hasnain, Zaki; Mason, Jeremy et al. (2016) The prisoner's dilemma as a cancer model. Converg Sci Phys Oncol 2:
West, Jeffrey; Hasnain, Zaki; Macklin, Paul et al. (2016) AN EVOLUTIONARY MODEL OF TUMOR CELL KINETICS AND THE EMERGENCE OF MOLECULAR HETEROGENEITY DRIVING GOMPERTZIAN GROWTH. SIAM Rev Soc Ind Appl Math 58:716-736
Mitrugno, Annachiara; Tormoen, Garth W; Kuhn, Peter et al. (2016) The prothrombotic activity of cancer cells in the circulation. Blood Rev 30:11-9
Ruiz, Carmen; Li, Julia; Luttgen, Madelyn S et al. (2015) Limited genomic heterogeneity of circulating melanoma cells in advanced stage patients. Phys Biol 12:016008
Baker-Groberg, Sandra M; Phillips, Kevin G; Healy, Laura D et al. (2015) Critical behavior of subcellular density organization during neutrophil activation and migration. Cell Mol Bioeng 8:543-552
Phillips, Kevin G; Lee, Angela M; Tormoen, Garth W et al. (2015) The thrombotic potential of circulating tumor microemboli: computational modeling of circulating tumor cell-induced coagulation. Am J Physiol Cell Physiol 308:C229-36
King, Michael R; Phillips, Kevin G; Mitrugno, Annachiara et al. (2015) A physical sciences network characterization of circulating tumor cell aggregate transport. Am J Physiol Cell Physiol 308:C792-802

Showing the most recent 10 out of 61 publications