The overall goal of the Dynomics Project is to provide a molecular genomic 'fingerprint'ofthe genome and transcriptome of cancer cells at all stages of development that can serve as a platform for identify patterns or relationships between physical, morphological, and genomic parameters and correlate those properties with the stage or evolution of the disease in a patient. The samples that we will utilize will match those used in RP1 and RP2 such that the

Public Health Relevance

The genomic and transcriptomic data set to be generated across space in tumor tissue and in time from circulating tumor cells will provide a dynamic parameterization of two distinct forms of cancer, colon and lung. The integration of these data sets into a physical modeling framework will provide unique insights into the physical dynamics of cancer progression.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143906-05
Application #
8568055
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
5
Fiscal Year
2013
Total Cost
$102,443
Indirect Cost
$35,260
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Phillips, Kevin G; Kuhn, Peter; McCarty, Owen J T (2014) Physical biology in cancer. 2. The physical biology of circulating tumor cells. Am J Physiol Cell Physiol 306:C80-8
Jones, Casey M; Baker-Groberg, Sandra M; Cianchetti, Flor A et al. (2014) Measurement science in the circulatory system. Cell Mol Bioeng 7:1-14
Dago, Angel E; Stepansky, Asya; Carlsson, Anders et al. (2014) Rapid phenotypic and genomic change in response to therapeutic pressure in prostate cancer inferred by high content analysis of single circulating tumor cells. PLoS One 9:e101777
Phillips, Kevin G; Baker-Groberg, Sandra M; McCarty, Owen J T (2014) Quantitative optical microscopy: measurement of cellular biophysical features with a standard optical microscope. J Vis Exp :
Rodriguez-Lee, Mariam; Kuhn, Peter; Webb, David R (2014) Advancing cancer patient care by integrating circulating tumor cell technology to understand the spatial and temporal dynamics of cancer. Drug Dev Res 75:384-92
Totonchy, Jennifer E; Clepper, Lisa; Phillips, Kevin G et al. (2014) CXCR7 expression disrupts endothelial cell homeostasis and causes ligand-dependent invasion. Cell Adh Migr 8:165-76
Carlsson, Anders; Nair, Viswam S; Luttgen, Madelyn S et al. (2014) Circulating tumor microemboli diagnostics for patients with non-small-cell lung cancer. J Thorac Oncol 9:1111-9
Bethel, Kelly; Luttgen, Madelyn S; Damani, Samir et al. (2014) Fluid phase biopsy for detection and characterization of circulating endothelial cells in myocardial infarction. Phys Biol 11:016002
Bazhenova, Lyudmila; Newton, Paul; Mason, Jeremy et al. (2014) Adrenal metastases in lung cancer: clinical implications of a mathematical model. J Thorac Oncol 9:442-6
Baker-Groberg, Sandra M; Phillips, Kevin G; McCarty, Owen J T (2013) Quantification of volume, mass, and density of thrombus formation using brightfield and differential interference contrast microscopy. J Biomed Opt 18:16014

Showing the most recent 10 out of 40 publications