We are convinced that the diverse perspectives and techniques developed by physical and quantitative scientists can make a significant impact on cancer management and treatment in potentially revolutionary ways. This proposal is centered on our strong belief that diverse physical measurements at multiple scales from molecular to organismic need to be integrated with sophisticated and diverse modeling approaches to generate a model of cancer that can be used predict the behavior of cancers during emergence and in response to perturbation. Our primary hypothesis is that multi-scale measurement and modeling will allow specific cases of cancer to be modeled with sufficient fidelity to estimate'the relative probable efficacy of alternative therapies (rationally integrating genotype, tumor environment and treatment parameters to predict outcome). Our strategy presupposes that analyses of specific properties at the molecular-cell, tumor and host levels when integrated in an appropriate modeling framework can inform therapeutic response. The consortium that has committed to this project is a group of investigators with widely diverse expertise and a common vision to develop and to apply physical sciences approaches to the study of cancer. This proposal describes the development of an integrated virtual cancer model that Incorporates a molecular-cellular model (RP1), a cancer cell evolutionary model of tumor heterogeneity (RP2), a whole tumor model with physically relevant spatial parameters to model tumor micro-environment and interaction with vasculature (RP3), and, lastly, a host model that aims to model physiological, immune and metabolic responses to tumor growth (RP4). These models will be built upon a unique synchronized dataset wherein a suite of novel measurement platforms are applied to a common set of samples from clinically relevant model systems testing therapeutic response of acute myelogenous leukemia (AML) and non-Hodgkins lymphoma (NHL) to standard cytotoxic therapy.

Public Health Relevance

Clinical tools to accurately describe, evaluate and predict an individual's response to cancer therapy are a field-wide priority. Through our virtual cancer, we anticipate it will become possible to take a small number of measurements from a patient, input those measurements as calibrants to our virtual cancer and then simulate the growth and response to therapy of the patient.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143907-04
Application #
8328164
Study Section
Special Emphasis Panel (ZCA1-SRLB-9 (O1))
Program Officer
Hanlon, Sean E
Project Start
2009-09-28
Project End
2014-07-31
Budget Start
2012-08-30
Budget End
2013-07-31
Support Year
4
Fiscal Year
2012
Total Cost
$3,049,258
Indirect Cost
$610,019
Name
University of Southern California
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Ng, Chin F; Frieboes, Hermann B (2018) Simulation of Multispecies Desmoplastic Cancer Growth via a Fully Adaptive Non-linear Full Multigrid Algorithm. Front Physiol 9:821
Tipton, Laura; Müller, Christian L; Kurtz, Zachary D et al. (2018) Fungi stabilize connectivity in the lung and skin microbial ecosystems. Microbiome 6:12
Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius et al. (2018) Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors. Theranostics 8:1389-1398
Tennill, Thomas A; Gross, Mitchell E; Frieboes, Hermann B (2017) Automated analysis of co-localized protein expression in histologic sections of prostate cancer. PLoS One 12:e0178362
Ware, Matthew J; Curtis, Louis T; Wu, Min et al. (2017) Pancreatic adenocarcinoma response to chemotherapy enhanced with non-invasive radio frequency evaluated via an integrated experimental/computational approach. Sci Rep 7:3437
Ng, Chin F; Frieboes, Hermann B (2017) Model of vascular desmoplastic multispecies tumor growth. J Theor Biol 430:245-282
Garvey, Colleen M; Gerhart, Torin A; Mumenthaler, Shannon M (2017) Discrimination and Characterization of Heterocellular Populations Using Quantitative Imaging Techniques. J Vis Exp :
Lee, Jung-Rok; Chan, Carmel T; Ruderman, Daniel et al. (2017) Longitudinal Monitoring of Antibody Responses against Tumor Cells Using Magneto-nanosensors with a Nanoliter of Blood. Nano Lett 17:6644-6652
Yan, Huaming; Romero-Lopez, Monica; Frieboes, Hermann B et al. (2017) Multiscale Modeling of Glioblastoma Suggests that the Partial Disruption of Vessel/Cancer Stem Cell Crosstalk Can Promote Tumor Regression Without Increasing Invasiveness. IEEE Trans Biomed Eng 64:538-548
Yan, Huaming; Romero-López, Mónica; Benitez, Lesly I et al. (2017) 3D Mathematical Modeling of Glioblastoma Suggests That Transdifferentiated Vascular Endothelial Cells Mediate Resistance to Current Standard-of-Care Therapy. Cancer Res 77:4171-4184

Showing the most recent 10 out of 128 publications