Developing a strong educafional component for our CCSB is a fimely enterprise because GUMC has moved significanfiy in the direcfion of extending research and educafion in systems biology across our enfire campus. We already offer mulfiple programs immediately relevant to the educafional and training goals of this CCSB. Several of these activities occur within an interdisciplinary MS degree in Tumor Biology (directed by Dr. Hilakivi-Clarke, Project 3), a NCI-funded training grant in Tumor Biology for graduate and postdoctoral fellows (T32-CA009686), and a funded collaborative educafion program in cancer biology, prevenfion, and control with the University of the District of Columbia, a Historically Black University (U56-CA101429). We will also collaborate with other CCSBs to extend educafional activities directed specifically to CCSB members and the Georgetown University/VA Tech/FCCC communities, and to those targeted across the ICBP program and the broader scientific community. The educational, training, and outreach activities in this CCSB will be developed, led, and delivered by acknowledged experts in the fields of cancer systems biology, bioinformatics, and computational modeling at Georgetown University and Virginia Tech. This highly integrated group of faculty, their backgrounds, training, ongoing research, and educational activities establish their collective ability to complete the activities we propose here.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA149147-05
Application #
8627144
Study Section
Special Emphasis Panel (ZCA1-SRLB-C)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
5
Fiscal Year
2014
Total Cost
$117,084
Indirect Cost
Name
Georgetown University
Department
Type
DUNS #
049515844
City
Washington
State
DC
Country
United States
Zip Code
20057
Stires, Hillary; Heckler, Mary M; Fu, Xiaoyong et al. (2018) Integrated molecular analysis of Tamoxifen-resistant invasive lobular breast cancer cells identifies MAPK and GRM/mGluR signaling as therapeutic vulnerabilities. Mol Cell Endocrinol 471:105-117
Wärri, Anni; Cook, Katherine L; Hu, Rong et al. (2018) Autophagy and unfolded protein response (UPR) regulate mammary gland involution by restraining apoptosis-driven irreversible changes. Cell Death Discov 4:40
Shi, Xu; Wang, Xiao; Wang, Tian-Li et al. (2018) SparseIso: a novel Bayesian approach to identify alternatively spliced isoforms from RNA-seq data. Bioinformatics 34:56-63
Beck, Tim N; Smith, Chad H; Flieder, Douglas B et al. (2017) Head and neck squamous cell carcinoma: Ambiguous human papillomavirus status, elevated p16, and deleted retinoblastoma 1. Head Neck 39:E34-E39
Chen, Xi; Shi, Xu; Hilakivi-Clarke, Leena et al. (2017) PSSV: a novel pattern-based probabilistic approach for somatic structural variation identification. Bioinformatics 33:177-183
Varghese, Rency S; Zuo, Yiming; Zhao, Yi et al. (2017) Protein network construction using reverse phase protein array data. Methods 124:89-99
Zhang, Xiyuan; Cook, Katherine L; Warri, Anni et al. (2017) Lifetime Genistein Intake Increases the Response of Mammary Tumors to Tamoxifen in Rats. Clin Cancer Res 23:814-824
Zhang, Yong-Wei; Nasto, Rochelle E; Jablonski, Sandra A et al. (2017) RNA Interference Screening to Identify Proliferation Determinants in Breast Cancer Cells. Bio Protoc 7:
Bhuvaneshwar, Krithika; Belouali, Anas; Singh, Varun et al. (2016) G-DOC Plus - an integrative bioinformatics platform for precision medicine. BMC Bioinformatics 17:193
Sumis, Allison; Cook, Katherine L; Andrade, Fabia O et al. (2016) Social isolation induces autophagy in the mouse mammary gland: link to increased mammary cancer risk. Endocr Relat Cancer 23:839-56

Showing the most recent 10 out of 107 publications