Our proposal for a Sage CCSB, "Integrating cancer datasets for predictive model development and training," has as its central scientific theme the generation of a set of probabilistic causal models for a series of tumor types from numerous collaborators. By selecting sample sets with different clinical outcomes, the resultant Sage models will have applications impacting cancer biology, early intervention, and cancer treatments. The Sage CCSB leverages the extensive work done at Rosetta/Merck on predictive models in numerous disease areas, which has been gifted to a new nonprofit medical research organization, "Sage Bionetworks." The Sage CCSB operational model contains a core platform of curated data, mathematical models and experienced investigators mentoring postdoctoral trainees/fellows. The data comes from collaborators and consists of DNA variation data, RNA expression data and clinical outcomes. The trainees will collate and annotate the genotypic, intermediate molecular phenotype, and clinical end point data from at least five different tumor-type cohorts and develop models that can predict potential new cancer targets, markers for early detection, and clinical outcomes. They will do externships at other sites (CCSBs), where they will build additional models of their data and facilitate reciprocal exchange of ideas. The trainees will delineate specifications for tools that will make the access to these models more scalable. Validation of their hypotheses will be performed at the Fred Hutchinson Cancer Research Center and the Netherlands Cancer Institute. This post-doctoral program will provide a unique training and mentorship environment in cancer systems biology and facilitate interactions between CCSBs and NCI.

Public Health Relevance

The massive generation of molecular information in oncology will not in itself change cancer death rates. This highlights the need to transition from archiving and binning facts to building predictive models of disease that help patients. Probabilistic causal models with curated data will allow early detection markers and directed therapies as well as predicting outcomes. The Sage CCSB will enable this distributed model building, while training scientists, building interface tools, and linking models between sites.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-C (J1))
Program Officer
Gallahan, Daniel L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sage Bionetworks
United States
Zip Code
Jang, In Sock; Neto, Elias Chaibub; Guinney, Juistin et al. (2014) Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac Symp Biocomput :63-74
Gönen, Mehmet (2014) Coupled dimensionality reduction and classification for supervised and semi-supervised multilabel learning. Pattern Recognit Lett 38:132-141
Chaibub Neto, Elias; Bare, J Christopher; Margolin, Adam A (2014) Simulation studies as designed experiments: the comparison of penalized regression models in the "large p, small n" setting. PLoS One 9:e107957
Gönen, Mehmet; Margolin, Adam A (2014) Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning. Bioinformatics 30:i556-63
Neto, Elias Chaibub; Jang, In Sock; Friend, Stephen H et al. (2014) The Stream algorithm: computationally efficient ridge-regression via Bayesian model averaging, and applications to pharmacogenomic prediction of cancer cell line sensitivity. Pac Symp Biocomput :27-38
Moser, Russell; Xu, Chang; Kao, Michael et al. (2014) Functional kinomics identifies candidate therapeutic targets in head and neck cancer. Clin Cancer Res 20:4274-88
Guinney, Justin; Ferte, Charles; Dry, Jonathan et al. (2014) Modeling RAS phenotype in colorectal cancer uncovers novel molecular traits of RAS dependency and improves prediction of response to targeted agents in patients. Clin Cancer Res 20:265-72
Cermelli, Silvia; Jang, In Sock; Bernard, Brady et al. (2014) Synthetic lethal screens as a means to understand and treat MYC-driven cancers. Cold Spring Harb Perspect Med 4:
Ferte, Charles; Fernandez, Marianna; Hollebecque, Antoine et al. (2014) Tumor growth rate is an early indicator of antitumor drug activity in phase I clinical trials. Clin Cancer Res 20:246-52
Ferte, Charles; Loriot, Yohann; Clemenson, Celine et al. (2013) IGF-1R targeting increases the antitumor effects of DNA-damaging agents in SCLC model: an opportunity to increase the efficacy of standard therapy. Mol Cancer Ther 12:1213-22

Showing the most recent 10 out of 18 publications