This Center for Cancer Nanotechnology Excellence and Translation (CCNE-T) brings together scientists and physicians from Stanford University, University of California Berkeley/Lawrence Berkeley National Lab, University of California Los Angeles, University of Southern California and the Massachusetts Institute of Technology. The grant also leverages on several activities in cancer biomarker discovery/validation with the Canary Foundation and the Fred Hutchinson Cancer Center. This research proposal is centered around our vision that in vitro diagnostics used in conjunction with in vivo diagnostics can markedly impact future cancer patient management. Furthermore, we believe that nanotechnology can significantly advance both in vitro diagnostics through proteomic nanosensors and in vivo diagnostics through nanoparticles for molecular imaging. The cancer-related biochemical pathways targeted will be the Herkinase axis with a focus on predicting and monitoring response to lung cancer therapy. An additional focus will be on the earlier detection of Ovarian Cancer We have assembled a highly interdisciplinary team of scientists from the fields of chemistry, materials science and engineering, molecular imaging, oncology, cancer biology, protein engineering, and mathematical modeling in order to accomplish our goals. We highly leverage resources at the Stanford Bio-X and Nanoscale Science and Engineering Programs, the California Nanosystems Institute, and the Cancer Centers of Stanford/UCL/VUSC/Fred Hutchinson. We will utilize significant resources at several small companies we have started and General Electric. We have direct links to a Fred Hutchinson Ovarian SPORE, a recently funded Physical Sciences Oncology Center (PSOC), the ICMIC P50, ICBP, and NTR at Stanford. Furthermore, the Canary Foundation will provide more than $3M towards clinical trials to translate our nanotechnologies and help with outreach. Four research projects and three cores are proposed. Project #1 focuses on novel smart nanoparticles including Raman and self-assembling nanoparticles, Project #2 focuses on the use of magneto-nanotechnology for blood proteomics and cell sorting. Project #3 focuses on the use of multiple nano-platforms to interrogate single circulating tumor cells. Project #4 focuses on molecular imaging of ovarian cancer with photoacoustics and Raman nanoparticles, and monitoring response to therapy using imaging and magneto-nanosensors. Core #1 will facilitate Nanoinformatics, Core #2 will provide resources for nanocharacterization and nanofabrication, Core #3 will facilitate clinical translation by linking our nanotechnologies to existing patient samples and ongoing as well as new clinical trials. With our highly interactive and cohesive program focused on developing and validating nanotechnology for anti-cancer therapy response and earlier cancer detection, we will imagine, invent, and innovate for the benefit of cancer patients.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
United States
Zip Code
Si, Peng; Sen, Debasish; Dutta, Rebecca et al. (2017) In Vivo Molecular Optical Coherence Tomography of Lymphatic Vessel Endothelial Hyaluronan Receptors. Sci Rep 7:1086
Liba, Orly; Lew, Matthew D; SoRelle, Elliott D et al. (2017) Speckle-modulating optical coherence tomography in living mice and humans. Nat Commun 8:15845
Feng, Yi; Zhu, Shoujun; Antaris, Alexander L et al. (2017) Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore. Chem Sci 8:3703-3711
Antaris, Alexander L; Chen, Hao; Diao, Shuo et al. (2017) A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat Commun 8:15269
Willmann, J├╝rgen K; Bonomo, Lorenzo; Carla Testa, Antonia et al. (2017) Ultrasound Molecular Imaging With BR55 in Patients With Breast and Ovarian Lesions: First-in-Human Results. J Clin Oncol 35:2133-2140
Kani, Kian; Garri, Carolina; Tiemann, Katrin et al. (2017) JUN-Mediated Downregulation of EGFR Signaling Is Associated with Resistance to Gefitinib in EGFR-mutant NSCLC Cell Lines. Mol Cancer Ther 16:1645-1657
Mohanty, Suchismita; Chen, Zixin; Li, Kai et al. (2017) A Novel Theranostic Strategy for MMP-14-Expressing Glioblastomas Impacts Survival. Mol Cancer Ther 16:1909-1921
Liba, Orly; SoRelle, Elliott D; Sen, Debasish et al. (2016) Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging. Sci Rep 6:23337
Winetraub, Yonatan; SoRelle, Elliott D; Liba, Orly et al. (2016) Quantitative contrast-enhanced optical coherence tomography. Appl Phys Lett 108:023702
SoRelle, Elliott D; Liba, Orly; Campbell, Jos L et al. (2016) A hyperspectral method to assay the microphysiological fates of nanomaterials in histological samples. Elife 5:

Showing the most recent 10 out of 132 publications