PROJECT 4/GAMBHIR PI: Gambhlr, Sanjiv S N3.4.1. Project Summary. Our long-term goals are to clinically translate nanodiagnostics {in vitro and in vivo) for the improved management of cancer patients. Our primary focus for this competing GONE renewal is on developing and using nanotechnology for earlier cancer detection/intervention, and for monitoring response to anti-neoplastic therapy. In the current proposal we focus on both ovarian and non-small cell lung cancers but expect that our strategies will eventually apply to many other cancers. We have made significant progress over the last cycle of this CCNE competing renewal grant including the development of Raman and photoacoustic molecular imaging strategies. In the last year we have also pursued translation of gold based Raman nanoparticles with endoscopic imaging for earlier colorectal cancer detection in patients. Both in vitro nanosensors and in vivo nano-molecular imaging will be utilized to accomplish our long-term goals. The combination of both in vitro and in vivo diagnostic strategies is expected to lead to a much greater accuracy and cost-effectiveness than either strategy alone. To translate our in vitro and in vivo diagnostic strategies we will utilize mouse models of human cancer that help us to test our approaches prior to clinical translation. The clinical translation will be accomplished through the help ofthe clinical translation core (Core 3) which links to various clinical trials and leverages on other funding mechanisms already in place in our CCNE.
Two aims focused on ovarian and non-small cell lung cancer diagnostics will be pursued to accomplish our goals and are detailed next (Fig. N3.4.1).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151459-04
Application #
8540378
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
4
Fiscal Year
2013
Total Cost
$156,925
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Si, Peng; Sen, Debasish; Dutta, Rebecca et al. (2017) In Vivo Molecular Optical Coherence Tomography of Lymphatic Vessel Endothelial Hyaluronan Receptors. Sci Rep 7:1086
Liba, Orly; Lew, Matthew D; SoRelle, Elliott D et al. (2017) Speckle-modulating optical coherence tomography in living mice and humans. Nat Commun 8:15845
Feng, Yi; Zhu, Shoujun; Antaris, Alexander L et al. (2017) Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore. Chem Sci 8:3703-3711
Antaris, Alexander L; Chen, Hao; Diao, Shuo et al. (2017) A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat Commun 8:15269
Willmann, J├╝rgen K; Bonomo, Lorenzo; Carla Testa, Antonia et al. (2017) Ultrasound Molecular Imaging With BR55 in Patients With Breast and Ovarian Lesions: First-in-Human Results. J Clin Oncol 35:2133-2140
Kani, Kian; Garri, Carolina; Tiemann, Katrin et al. (2017) JUN-Mediated Downregulation of EGFR Signaling Is Associated with Resistance to Gefitinib in EGFR-mutant NSCLC Cell Lines. Mol Cancer Ther 16:1645-1657
Mohanty, Suchismita; Chen, Zixin; Li, Kai et al. (2017) A Novel Theranostic Strategy for MMP-14-Expressing Glioblastomas Impacts Survival. Mol Cancer Ther 16:1909-1921
Liba, Orly; SoRelle, Elliott D; Sen, Debasish et al. (2016) Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging. Sci Rep 6:23337
Winetraub, Yonatan; SoRelle, Elliott D; Liba, Orly et al. (2016) Quantitative contrast-enhanced optical coherence tomography. Appl Phys Lett 108:023702
SoRelle, Elliott D; Liba, Orly; Campbell, Jos L et al. (2016) A hyperspectral method to assay the microphysiological fates of nanomaterials in histological samples. Elife 5:

Showing the most recent 10 out of 132 publications