OVERVIEW OF THE CLINICAL TRANSLATIONAL CORE AND IMPORTANCE OF THE CORE TO THE RESEARCH EFFORT We have identified the critical requirement to have a clinical translational core within the CCNE to coordinate application of our nanotechnologies to patient blood samples already collected and archived by other efforts. This core was not part of the original CCNE, but as we have started to apply our technologies to clinical specimens we feel it is an important core going forward in our renewal. For both blood protein biomarker and circulating tumor cell studies, the goal of this core is to utilize specimens already collected and prospectively being collected by other efforts (e.g., NCI ICMIC P50) in a systematic fashion with our nano-sensors being developed in RP2 and RP3. In addition, for the in vivo molecular imaging studies (endoscopic Raman imaging, photoacoustic molecular imaging) the goal of this core is to work with the NCI nanocharacterization labs and the Food and Drug Administration (FDA) in order to translate our nanoparticles into future clinical molecular imaging trials. Note, it is not the purpose of this core to actually collect samples from patients or to perform clinical trials, but just to facilitate clinical translation of nanotechnologies developed in the CCNE. Note also that the CCNE mechanism does not allow funding for prospective clinical trials, but by having this core we can bridge to other funded activities as well as apply for new funding for our clinical trials, to which we are whole-heartedly committed. In addition, the Canary Foundation is providing significant funding (in excess of $3IVI) for clinical trials for early cancer detection and providing partial funding for this and other cores (see Appendix 1 and letter of support).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151459-05
Application #
8726319
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$62,747
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vermesh, Ophir; Aalipour, Amin; Ge, T Jessie et al. (2018) An intravascular magnetic wire for the high-throughput retrieval of circulating tumour cells in vivo. Nat Biomed Eng 2:696-705
Li, Jingchao; Rao, Jianghong; Pu, Kanyi (2018) Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155:217-235
Pohling, Christoph; Campbell, Jos L; Larson, Timothy A et al. (2018) Smart-Dust-Nanorice for Enhancement of Endogenous Raman Signal, Contrast in Photoacoustic Imaging, and T2-Shortening in Magnetic Resonance Imaging. Small 14:e1703683
Shah, Preyas N; Lin, Tiras Y; Aanei, Ioana L et al. (2018) Extravasation of Brownian Spheroidal Nanoparticles through Vascular Pores. Biophys J 115:1103-1115
Song, Guosheng; Chen, Min; Zhang, Yanrong et al. (2018) Janus Iron Oxides @ Semiconducting Polymer Nanoparticle Tracer for Cell Tracking by Magnetic Particle Imaging. Nano Lett 18:182-189
Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius et al. (2018) Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors. Theranostics 8:1389-1398
Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina et al. (2017) Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array. ACS Nano 11:8864-8870
Mohanty, Suchismita; Chen, Zixin; Li, Kai et al. (2017) A Novel Theranostic Strategy for MMP-14-Expressing Glioblastomas Impacts Survival. Mol Cancer Ther 16:1909-1921
Kani, Kian; Garri, Carolina; Tiemann, Katrin et al. (2017) JUN-Mediated Downregulation of EGFR Signaling Is Associated with Resistance to Gefitinib in EGFR-mutant NSCLC Cell Lines. Mol Cancer Ther 16:1645-1657
Lee, Jung-Rok; Chan, Carmel T; Ruderman, Daniel et al. (2017) Longitudinal Monitoring of Antibody Responses against Tumor Cells Using Magneto-nanosensors with a Nanoliter of Blood. Nano Lett 17:6644-6652

Showing the most recent 10 out of 143 publications