Title: Animal Imaging Core Recent advances in small animal imaging have substanfially improved our ability to gain insights into disease progression without altering the biological systems. The small animal imaging facility at UNC currentiy houses nine major imaging equipments, including MRI (2), PET/CT (1), CT (1), SPECT (1), optical imaging (3), and ultrasound (1). In addition, skillful technical staff members to maintain and operate the imaging equipments and animal technicians to facilitate animal preparation for imaging and monitoring during imaging are available. Leveraging on these impressive resources, the small animal imaging (SAI) core aims to provide advanced imaging technology to facilitate the proposed projects. Specifically, two major imaging tasks will be carried out for the proposed projects, including to depict biodistribution of nanoparticles (Projects 1, 2, and 3) and to monitor and evaluate therapeutic efficacy of the proposed nanoparticles or treatment regirnens (Projects 2, 3, and 4) using imaging methods. To accomplish the former task, both PET and optical imaging methods will be developed to more efficiently and accurately provide biodistribution informafion. For the latter task, four imaging modalities, including optical, CT, PET, and MRI will be used to monitor therapeufic efficacy. Finally, while the imaging capability in the small animal imaging facility is already impressive, our insfitution has committed additional funds to further augment the imaging program at UNC, including the establishment of an on-site cyclotron facility and the associated radiochemistry lab and the development of imaging registrafion approaches for mulfimodality imaging using microCT, MRI, and PET (Projects 2, 3 and 4). Together, we believe that the available technical expertise and well established infrastructure in the small animal imaging facility will greatly facilitate the success ofthe proposed projects.

Public Health Relevance

The SAI core will provide novel non-invasive imaging approaches for determining bio-distribufion ofthe proposed nanoparticles and monitoring disease progression and therapeutic efficacy. In addition, image analysis tools will be developed to provide quanfitative measures of biological parameters.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151652-03
Application #
8381546
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
3
Fiscal Year
2012
Total Cost
$75,228
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Sun, Junjiang; Shao, Wenwei; Chen, Xiaojing et al. (2018) An Observational Study from Long-Term AAV Re-administration in Two Hemophilia Dogs. Mol Ther Methods Clin Dev 10:257-267
Liu, Lina; Wang, Yuhua; Miao, Lei et al. (2018) Combination Immunotherapy of MUC1 mRNA Nano-vaccine and CTLA-4 Blockade Effectively Inhibits Growth of Triple Negative Breast Cancer. Mol Ther 26:45-55
Starling, Brittney R; Kumar, Parag; Lucas, Andrew T et al. (2018) Mononuclear phagocyte system function and nanoparticle pharmacology in obese and normal weight ovarian and endometrial cancer patients. Cancer Chemother Pharmacol :
Chai, Zheng; Zhang, Xintao; Rigsbee, Kelly Michelle et al. (2018) Cryoprecipitate augments the global transduction of the adeno-associated virus serotype 9 after a systemic administration. J Control Release 286:415-424
Wang, Yuhua; Zhang, Lu; Xu, Zhenghong et al. (2018) mRNA Vaccine with Antigen-Specific Checkpoint Blockade Induces an Enhanced Immune Response against Established Melanoma. Mol Ther 26:420-434
Pei, Xiaolei; He, Ting; Hall, Nikita E et al. (2018) AAV8 virions hijack serum proteins to increase hepatocyte binding for transduction enhancement. Virology 518:95-102
Zhang, Xintao; He, Ting; Chai, Zheng et al. (2018) Blood-brain barrier shuttle peptides enhance AAV transduction in the brain after systemic administration. Biomaterials 176:71-83
Kim, Junghyun; Narayan, Roger J; Lu, Xiuling et al. (2017) Neutron-activatable needles for radionuclide therapy of solid tumors. J Biomed Mater Res A 105:3273-3280
Min, Yuanzeng; Roche, Kyle C; Tian, Shaomin et al. (2017) Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol 12:877-882
Wu, Gongting; Inscoe, Christina R; Calliste, Jabari et al. (2017) Estimating scatter from sparsely measured primary signal. J Med Imaging (Bellingham) 4:013508

Showing the most recent 10 out of 190 publications