Title: Animal Imaging Core Recent advances in small animal imaging have substantially improved our ability to gain insights into disease progression without altering the biological systems. The small animal imaging facility at UNC currently houses nine major imaging equipments, including MRI (2), PET/CT (1), CT (1), SPECT (1), optical imaging (3), and ultrasound (1). In addition, skillful technical staff members to maintain and operate the imaging equipments and animal technicians to facilitate animal preparation for imaging and monitoring during imaging are available. Leveraging on these impressive resources, the small animal imaging (SAI) core aims to provide advanced imaging technology to facilitate the proposed projects. Specifically, two major imaging tasks will be carried out for the proposed projects, including to depict biodistribution of nanoparticles (Projects 1, 2, and 3) and to monitor and evaluate therapeutic efficacy of the proposed nanoparticles or treatment regimens (Projects 2, 3, and 4) using imaging methods. To accomplish the former task, both PET and optical imaging methods will be developed to more efficiently and accurately provide biodistribution information. For the latter task, four imaging modalities, including optical, CT, PET, and MRI will be used to monitor therapeutic efficacy. Finally, while the imaging capability in the small animal imaging facility is already impressive, our institution has committed additional funds to further augment the imaging program at UNC, including the establishment of an on-site cyclotron facility and the associated radiochemistry lab and the development of imaging registration approaches for multimodality imaging using microCT, MRI, and PET (Projects 2, 3 and 4). Together, we believe that the available technical expertise and well established infrastructure in the small animal imaging facility will greatly facilitate the success ofthe proposed projects.

Public Health Relevance

The SAI core will provide novel non-invasive imaging approaches for determining bio-distribution of the proposed nanoparticles and monitoring disease progression and therapeutic efficacy. In addition, image analysis tools will be developed to provide quantitative measures of biological parameters.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151652-04
Application #
8540388
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
2013-08-01
Project End
2015-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
4
Fiscal Year
2013
Total Cost
$55,238
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Sun, Junjiang; Shao, Wenwei; Chen, Xiaojing et al. (2018) An Observational Study from Long-Term AAV Re-administration in Two Hemophilia Dogs. Mol Ther Methods Clin Dev 10:257-267
Liu, Lina; Wang, Yuhua; Miao, Lei et al. (2018) Combination Immunotherapy of MUC1 mRNA Nano-vaccine and CTLA-4 Blockade Effectively Inhibits Growth of Triple Negative Breast Cancer. Mol Ther 26:45-55
Starling, Brittney R; Kumar, Parag; Lucas, Andrew T et al. (2018) Mononuclear phagocyte system function and nanoparticle pharmacology in obese and normal weight ovarian and endometrial cancer patients. Cancer Chemother Pharmacol :
Chai, Zheng; Zhang, Xintao; Rigsbee, Kelly Michelle et al. (2018) Cryoprecipitate augments the global transduction of the adeno-associated virus serotype 9 after a systemic administration. J Control Release 286:415-424
Wang, Yuhua; Zhang, Lu; Xu, Zhenghong et al. (2018) mRNA Vaccine with Antigen-Specific Checkpoint Blockade Induces an Enhanced Immune Response against Established Melanoma. Mol Ther 26:420-434
Pei, Xiaolei; He, Ting; Hall, Nikita E et al. (2018) AAV8 virions hijack serum proteins to increase hepatocyte binding for transduction enhancement. Virology 518:95-102
Zhang, Xintao; He, Ting; Chai, Zheng et al. (2018) Blood-brain barrier shuttle peptides enhance AAV transduction in the brain after systemic administration. Biomaterials 176:71-83
Bowerman, Charles J; Byrne, James D; Chu, Kevin S et al. (2017) Docetaxel-Loaded PLGA Nanoparticles Improve Efficacy in Taxane-Resistant Triple-Negative Breast Cancer. Nano Lett 17:242-248
Lucas, Andrew T; White, Taylor F; Deal, Allison M et al. (2017) Profiling the relationship between tumor-associated macrophages and pharmacokinetics of liposomal agents in preclinical murine models. Nanomedicine 13:471-482
Kim, Junghyun; Luo, Zhi-Xiang; Wu, Yue et al. (2017) In-Situ Formation of Holmium Oxide in Pores of Mesoporous Carbon Nanoparticles as Substrates for Neutron-Activatable Radiotherapeutics. Carbon N Y 117:92-99

Showing the most recent 10 out of 190 publications