Project 3: Translational Nanosystems for Improved Lung Cancer Treatment with Small Molecules Non-small cell lung cancer (NSCLC) kills more patients than the next three highest cancers combined. Approximately 70% of the patients are not diagnosed until stage IV metastatic disease where the prognosis is very poor. The standard-of-care with a platinum drug and Taxol only extends life minimally due to many factors including formulation limitations, resistance, poor treatment of metastases, and drug related toxicities. Project 3 takes a translational pipeline approach, using an excellent orthotopic mouse model of metastatic NSCLC to, for the first time, directly compare three distinct nanoparticle (NP) approaches to deliver otherwise effective small molecule chemotherapies. The unique chemistry, composition, drug release characteristics, formulation and surfaces of the three NPs will optimized and then tested in sensitive and resistant NSCLC cells. Developed drug NPs containing either cisplatin or paditaxel, meeting defined performance and safety criteria, will be screened in an established orthotopic NSCLC model that is metastatic and either sensitive or resistant. In parallel, NPs will be targeted to tumor cells using unique epidermal growth factor receptor (EGFR) recognition ligands developed in the Targeting Ligand Core. Sophisticated pharmacokinetics and direct measurement of in-vivo drug delivery will be performed In collaboration with the PK/PD Core. In-vivo efficacy of drug NPs will be followed with luminescence detection of the luciferase containing lung cancer cells in the orthotopic model in partnership with the Animal Studies Core and the Small Animal Imaging Core. Positive results will be confirmed by CT/PET scanning. The strength of the project is its project management approach and the comparison of three core nanotechnology platforms developed and tested In our current CCNE;1) BTM - a highly scalable oil-core nanocapsule approach with unique activity in multidrug resistant expressing cells and mouse models, 2) PRINT - a 'top-down'fabrication technique to engineer a shape and size specific delivery system with high packaging efficiency and flexible surface chemistry, and 3) PSQ - a unique inorganic/organic hybrid technology that packages platinum agents in nanoparticles that are targetable and have very favorable drug release capabilities. Successful results in the orthotopic models will be followed by development of the drug NP product for early phase human trials using UNC-Chapel Hill, NCI NCL/RAID and/or start-up company support. The University Cancer Research Fund (UCRF) has committed $1 million to accelerate selected drug NP product testing in IND enabling studies

Public Health Relevance

In most developed countries, non-small cell lung cancer (NSCLC) is the leading cause of death from malignant disease. Nanoparticles targeted to primary and metastatic NSCLC may improve the standard of care and quality of life for cancer patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151652-05
Application #
8711355
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$312,891
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Lucas, Andrew T; O'Neal, Sara K; Santos, Charlene M et al. (2016) A sensitive high performance liquid chromatography assay for the quantification of doxorubicin associated with DNA in tumor and tissues. J Pharm Biomed Anal 119:122-9
Kai, Marc P; Brighton, Hailey E; Fromen, Catherine A et al. (2016) Tumor Presence Induces Global Immune Changes and Enhances Nanoparticle Clearance. ACS Nano 10:861-70
Roode, Luke E; Brighton, Hailey; Bo, Tao et al. (2016) Subtumoral analysis of PRINT nanoparticle distribution reveals targeting variation based on cellular and particle properties. Nanomedicine 12:1053-62
Miao, Lei; Liu, Qi; Lin, C Michael et al. (2016) Targeting Tumor-associated Fibroblasts for Therapeutic Delivery in Desmoplastic Tumors. Cancer Res :
Li, Chengwen; Wu, Shuqing; Albright, Blake et al. (2016) Development of Patient-specific AAV Vectors After Neutralizing Antibody Selection for Enhanced Muscle Gene Transfer. Mol Ther 24:53-65
DeSimone, Joseph M; Mecham, Sue J; Farrell, Crista L (2016) Organic Polymer Chemistry in the Context of Novel Processes. ACS Cent Sci 2:588-597
Lecaros, Rumwald Leo G; Huang, Leaf; Lee, Tsai-Chia et al. (2016) Nanoparticle Delivered VEGF-A siRNA Enhances Photodynamic Therapy for Head and Neck Cancer Treatment. Mol Ther 24:106-16
Lu, Yao; Miao, Lei; Wang, Yuhua et al. (2016) Curcumin Micelles Remodel Tumor Microenvironment and Enhance Vaccine Activity in an Advanced Melanoma Model. Mol Ther 24:364-74
Sambade, Maria; Deal, Allison; Schorzman, Allison et al. (2016) Efficacy and pharmacokinetics of a modified acid-labile docetaxel-PRINT(®) nanoparticle formulation against non-small-cell lung cancer brain metastases. Nanomedicine (Lond) 11:1947-55
Rose, Tracy L; Deal, Allison M; Ladoire, Sylvain et al. (2016) Patterns of Bladder Preservation Therapy Utilization for Muscle-Invasive Bladder Cancer. Bladder Cancer 2:405-413

Showing the most recent 10 out of 158 publications