The Nanoparticle Development, Production and Characterization Core (NP Core) will provide well characterized nanoparticles for all four projects associated with the Dartmouth CCNE. During the start-up phase of the CCNE, we will acquire commercial dextran-coated superparamagnefic iron oxide nanoparticles (SPIOs) from Aspens Systems, Inc., Mariborough, MA (see supporting letter). These will be used initially in all the projects to jumpstart them. Forthe purposes of quality control, the core will measure both the magnetic properties and heating behavior in an applied alternating magnetic field for all the SPIOs that we will use. The main purpose ofthe core is to provide biocompatibly-coated magnetic iron/iron oxide core/shell nanocomposite particles (mNPs) that have been developed at Dartmouth. These mNPs, which have superior heating characteristics to SPIOs, will be produced with a variety of sizes (8-100 nm) as requested by each of the projects. The mNPs will be made through our well-established microemulsion techniques and a biocompatible coating of either a phospholipid or dextran and polyethylene glycol (as required by different projects) will then be assembled onto the mNPs. Transmission electron microscopy will be used to characterize the nanoparticle size and size distribution;a vibrating sample magnetometer will be used to measure the magnetic properties of the mNPs in an alternating magnefic field (for quality control);and the heating effect of the mNPs will also be measured (again for quality control). Statistical analysis of the measurements of nanoparticle size measurements, magnetic measurements and heating measurements will be performed by the Biostatistics, Data Analysis and Computational Core. Advances that will be required in the NP Core as the work progresses include the development a wider range of particle sizes (currently only 8-20 nm have been produced);and scale up of the producfion of the mNPs to produce larger quantities will be needed.

Public Health Relevance

The NP Core will provide novel, well-characterized, biocompatible magnetic nanoparticles that can be heated in an alternating magnetic field to destroy tumors. The use of these nanoparticles inifially will be for breast cancer and ovarian cancer treatment, but the nanoparticles can potentially be used for any type of cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dartmouth College
United States
Zip Code
Rutkowski, Melanie R; Stephen, Tom L; Svoronos, Nikolaos et al. (2015) Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27:27-40
Stephen, Tom L; Rutkowski, Melanie R; Allegrezza, Michael J et al. (2014) Transforming growth factor ?-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression. Immunity 41:427-39
Reeves, Daniel B; Weaver, John B (2014) Approaches for modeling magnetic nanoparticle dynamics. Crit Rev Biomed Eng 42:85-93
Toraya-Brown, Seiko; Sheen, Mee Rie; Zhang, Peisheng et al. (2014) Local hyperthermia treatment of tumors induces CD8(+) T cell-mediated resistance against distal and secondary tumors. Nanomedicine 10:1273-85
Tichauer, Kenneth M; Deharvengt, Sophie J; Samkoe, Kimberley S et al. (2014) Tumor endothelial marker imaging in melanomas using dual-tracer fluorescence molecular imaging. Mol Imaging Biol 16:372-82
Tichauer, Kenneth M; Samkoe, Kimberley S; Gunn, Jason R et al. (2014) Microscopic lymph node tumor burden quantified by macroscopic dual-tracer molecular imaging. Nat Med 20:1348-53
Samkoe, Kimberley S; Tichauer, Kenneth M; Gunn, Jason R et al. (2014) Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach. Cancer Res 74:7465-74
Perreard, I M; Reeves, D B; Zhang, X et al. (2014) Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times. Phys Med Biol 59:1109-19
Ficko, Bradley W; Nadar, Priyanka M; Hoopes, P Jack et al. (2014) Development of a magnetic nanoparticle susceptibility magnitude imaging array. Phys Med Biol 59:1047-71
Russell, Stewart; Samkoe, Kimberley S; Gunn, Jason R et al. (2014) Spatial frequency analysis of anisotropic drug transport in tumor samples. J Biomed Opt 19:15005

Showing the most recent 10 out of 30 publications