The Dartmouth CCNE (DCCNE) Education/Training Program complements the research effort by focusing on the development of a graduate experience, which links together nanotechnology and engineering with cancer biology and immunology. This cross-disciplinary Program uses a cross-departmental organization to teach the fundamental scientific bases of materials, imaging systems, therapy technologies, immunology and toxicology, and specifically, their application to cancer nanomedicine. The Program sets quantifiable, achievable goals in terms of publications, conference attendance and seminars attended, to help set metrics for career development among students, post-docs, and established investigators. The key emphasis is to develop strategic partnerships formed from multidisciplinary teams with complementary expertise sets and then to match the learning goals of the participants to their individual training programs. This is possible because cancer nanotechnology research at Dartmouth occurs in graduate programs that are already delocalized from departments, evident at Thayer School of Engineering and at Dartmouth Medical School. A specific curriculum is proposed;students choose three of six possible areas of study, of which at least one must be each from engineering and medicine. Attention is given to research mentoring and career development The DCCNE will evaluate Program quality and efficiency at defined points on the education/training timeline, and will use the resulting outcomes information to inform ongoing programmatic development. Mechanisms for exchange of trainees among participating CCNEs is planned through a monthly seminar series featuring speakers from across the country, particularly from other CCNEs and nanotechnology research hubs. Outreach efforts will include seminars and symposia to disseminate DCCNE research in the wider scientific community, organization of and participation in national and regional conferences, and weekly seminars at Dartmouth focused on cancer nanotechnology. The DCCNE will hold an annual half-day forum at the Cancer Center to engage invited presentations in clinical translational research in nanotechnology as well as DCCNE investigators.

Public Health Relevance

The DCCNE Education/Training and Outreach Program complements the research effort by focusing on the development of a graduate experience linking nanostructures with cancer biology. It is organized as an extra-departmental program to develop and teach the fundamental scientific bases of nanostructures, cancer biology, and, specifically, application to new and emerging treatments in nanomedicine.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151662-05
Application #
8710056
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$115,788
Indirect Cost
$77,346
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Reeves, Daniel B; Shi, Yipeng; Weaver, John B (2016) Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics. PLoS One 11:e0150856
Lizotte, P H; Wen, A M; Sheen, M R et al. (2016) In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat Nanotechnol 11:295-303
Stigliano, Robert V; Shubitidze, Fridon; Petryk, James D et al. (2016) Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy. Int J Hyperthermia 32:735-48
Tesone, Amelia J; Rutkowski, Melanie R; Brencicova, Eva et al. (2016) Satb1 Overexpression Drives Tumor-Promoting Activities in Cancer-Associated Dendritic Cells. Cell Rep 14:1774-86
Sheen, M R; Marotti, J D; Allegrezza, M J et al. (2016) Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis 5:e267
Kekalo, Katsiaryna; Shubitidze, Fridon; Meyers, Robert et al. (2016) Magnetic Heating of Fe-Co Ferrites: Experiments and Modeling. Nano Life 6:
Nemani, Krishnamurthy V; Ennis, Riley C; Griswold, Karl E et al. (2015) Magnetic nanoparticle hyperthermia induced cytosine deaminase expression in microencapsulated E. coli for enzyme-prodrug therapy. J Biotechnol 203:32-40
Rutkowski, Melanie R; Stephen, Tom L; Svoronos, Nikolaos et al. (2015) Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27:27-40
Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert et al. (2015) Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy. J Appl Phys 117:094302
Reeves, Daniel B; Weaver, John B (2015) Combined Néel and Brown rotational Langevin dynamics in magnetic particle imaging, sensing, and therapy. Appl Phys Lett 107:223106

Showing the most recent 10 out of 95 publications