PROJECT OVERVIEW This project will focus on the application of nanotechnology to the unique problems of pancreatic adenocarcinoma (PAC). Unlike what is observed in other solid tumors, pancreafic cancer cells exist as foci embedded in an abundant dense hypovascular fibrofic stroma. Development of this dense stroma begins with eariy premalignant disease (pancreatic intraepithelial neoplasia (PanIN)) and continues through tumor progression. A primary goal of this project will be to develop nanotechnologies that can either penetrate or accumulate in the abundant stroma that characterizes pancreafic cancer. The ability to specifically deliver therapies to the pancreafic tumors will also allow the use of therapies directed at appropriate targets in individual patients, opening the door to individualized therapies. Unfortunately, the current preclinical tumor models for PAC do not develop stroma and thus do not accurately represent the microenvironment found in the human disease. Recentiy, we have developed novel preclinical mouse models, both xenografts and genetic, which accurately mimic this fibrofic microenvironment. We will use these novel and unique model systems to develop optimized nanotechnologies that target and accumulate within pancreafic stromal networks for therapy. Imaging, and prevenfion of PAC. Thus, we will effectively turn what was a barrier to therapeutic delivery into a reservoir for preventive and therapeutic agents. Alternatively, we will suppress the biological activity of the stromal cells to prevent cancer progression or to render the cancer more amenable to cancer cell directed therapies. Together these studies will, for the first fime, ufilize nanocarriers to penetrate the barrier surrounding pancreafic tumors to achieve clinically significant goals.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151668-05
Application #
8735864
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$401,713
Indirect Cost
$36,085
Name
University of Texas Health Science Center Houston
Department
Type
DUNS #
800771594
City
Houston
State
TX
Country
United States
Zip Code
77225
Cui, Min-Hui; Branch, Craig A; Cahill, Sean M et al. (2015) In vivo proton MR spectroscopy of pancreatic neuroendocrine tumors in a multiple endocrine neoplasia type 1 conditional knockout mouse model. Magn Reson Med 74:1221-6
Bottsford-Miller, Justin; Choi, Hyun-Jin; Dalton, Heather J et al. (2015) Differential platelet levels affect response to taxane-based therapy in ovarian cancer. Clin Cancer Res 21:602-10
Sun, Yan; Hu, Limei; Zheng, Hong et al. (2015) MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. J Pathol 235:25-36
Wen, Yunfei; Graybill, Whitney S; Previs, Rebecca A et al. (2015) Immunotherapy targeting folate receptor induces cell death associated with autophagy in ovarian cancer. Clin Cancer Res 21:448-59
Previs, Rebecca A; Coleman, Robert L; Harris, Adrian L et al. (2015) Molecular pathways: translational and therapeutic implications of the Notch signaling pathway in cancer. Clin Cancer Res 21:955-61
Jaganathan, Hamsa; Mitra, Sucharita; Srinivasan, Srimeenakshi et al. (2014) Design and in vitro evaluation of layer by layer siRNA nanovectors targeting breast tumor initiating cells. PLoS One 9:e91986
Ozpolat, Bulent; Sood, Anil K; Lopez-Berestein, Gabriel (2014) Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev 66:110-6
Yang, Yong; Wolfram, Joy; Fang, Xiaohong et al. (2014) Polyarginine induces an antitumor immune response through binding to toll-like receptor 4. Small 10:1250-4
Tang, Lei; van de Ven, Anne L; Guo, Dongmin et al. (2014) Computational modeling of 3D tumor growth and angiogenesis for chemotherapy evaluation. PLoS One 9:e83962
Zhaorigetu, Siqin; Rodriguez-Aguayo, Cristian; Sood, Anil K et al. (2014) Delivery of negatively charged liposomes into the atherosclerotic plaque of apolipoprotein E-deficient mouse aortic tissue. J Liposome Res 24:182-90

Showing the most recent 10 out of 153 publications