Three Core Resources facilities that support NSBCC Projects are described. The IMED Core #1, is located at UCLA, and is designed to provide project support and capability for the translation of our more advanced technology platforms to the greater (local) oncology community, thus expanding the influence of our most robust nanotechnologies The IMED core is wholly integrated into the UCLA Institute for Molecular Medicine (IMED). IMED is designed to support translational medicine projects both within and outside of the central NSBCC effort. This core also contains our key in vivo molecular imaging infrastructure and provides training for imaging and training on NSBCC technologies for translation. A devoted space with the larger IMED facility has been equipped with a suite of tools designed to customize NSBCC in vitro diagnostic technologies for specific translational medicine projects, including tools for the preparation and purification of key NSBCC nano/bio materials, the development of custom panels of protein biomarkers, and tools for surface customization. That NSBCC core facility is designed to fully leverage off of the much larger UCLA IMED translational medicine facility as well as the community of cancer researchers and clinicians that utilize that facility. The other two core resources are devoted to technology development. The NSBCC projects are driven by fundamental and clinical problems in cancer biology and the treatment of cancer patients. As such, our ultimate deliverables are, by and large, technology platforms (e.g. an in wfro diagnostic chip) that are combined with biological content (e.g. a panel of protein biomarkers). The nanofabrication and nanomatenals characterization core #2 at Caltech is designed to support NSBCC activities that range from rapid prototyping of nanotech and microfluidics platforms, nanomaterials synthesis and characterization, surface science, and technology platform scale-up. The systems biology core #3 at the Institute for Systems Biology is designed to support the genomics, transcriptomics, and proteomics work, as well as the computational biology and data base mining and development that provides the base support for much of the biological content within our deliverables.

Public Health Relevance

Core research facilities to support NSBCC projects also enable the connection of NSBCC technologies &biological advances to the broader oncology world. They include a translational medicine core (Core #1);a Core (#2) dsigned to produce NSBCC technology platforms for clinical translation;and Core #3, which connects NSBCC results to the greater world of oncology via shared databases and software.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151819-03
Application #
8380725
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
3
Fiscal Year
2012
Total Cost
$29,857
Indirect Cost
Name
California Institute of Technology
Department
Type
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Lisova, Ksenia; Sergeev, Maxim; Evans-Axelsson, Susan et al. (2018) Microscale radiosynthesis, preclinical imaging and dosimetry study of [18F]AMBF3-TATE: A potential PET tracer for clinical imaging of somatostatin receptors. Nucl Med Biol 61:36-44
Su, Yapeng; Shi, Qihui; Wei, Wei (2017) Single cell proteomics in biomedicine: High-dimensional data acquisition, visualization, and analysis. Proteomics 17:
Collins, Jeffrey; Waldmann, Christopher M; Drake, Christopher et al. (2017) Production of diverse PET probes with limited resources: 24 18F-labeled compounds prepared with a single radiosynthesizer. Proc Natl Acad Sci U S A 114:11309-11314
Turner, Kristen M; Deshpande, Viraj; Beyter, Doruk et al. (2017) Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543:122-125
Ghosh, Dhimankrishna; Funk, Cory C; Caballero, Juan et al. (2017) A Cell-Surface Membrane Protein Signature for Glioblastoma. Cell Syst 4:516-529.e7
Hong, Candice Sun; Graham, Nicholas A; Gu, Wen et al. (2016) MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors that Co-express MCT1 and MCT4. Cell Rep 14:1590-1601
Henning, Ryan K; Varghese, Joseph O; Das, Samir et al. (2016) Degradation of Akt using protein-catalyzed capture agents. J Pept Sci 22:196-200
Poovathingal, Suresh Kumar; Kravchenko-Balasha, Nataly; Shin, Young Shik et al. (2016) Critical Points in Tumorigenesis: A Carcinogen-Initiated Phase Transition Analyzed via Single-Cell Proteomics. Small 12:1425-31
Wei, Wei; Shin, Young Shik; Xue, Min et al. (2016) Single-Cell Phosphoproteomics Resolves Adaptive Signaling Dynamics and Informs Targeted Combination Therapy in Glioblastoma. Cancer Cell 29:563-573
Ghosh, Dhiman; Ulasov, Ilya V; Chen, LiPing et al. (2016) TGF?-Responsive HMOX1 Expression Is Associated with Stemness and Invasion in Glioblastoma Multiforme. Stem Cells 34:2276-89

Showing the most recent 10 out of 55 publications