Molecular heterogeneity is central to the development of therapeutic resistance in cancer patients. Current pathology practices are not sufficient for analyzing the molecular and functional properties of heterogeneous populations within a tumor. New approaches are needed for obtaining and using this information to guide more effective treatments that anticipate and suppress therapeutic resistance, and that improve the outcome for patients with cancer. Project 4 develops platforms combining nano-, chemical and micro-technologies with biological content to facilitate highly multiplexed quantitative molecular and functional measurements of small tumor samples directiy from the operafing room. The technology mix allows us to perform highly multiplexed biological measurements on small enough samples so that we can effectively address the questions of heterogeneity within solid glioblastoma tumors. The glioblastoma focus of this project permits leveraging the expertise of the investigators and established infrastructure developed during years 1-4 of our CCNE. This infrastructure includes access to meticulously characterized clinical samples, powerful mouse models, and companion grants obtained over the past few years that pave the way for integration of these technologies into the clinic. The technology pathway within this project begins by leveraging off of the platform of DNA encoded anfibody libraries (DEAL) that was developed under current CCNE funding. We extend this platform to a host of new measurement types for analyzing tumor molecular heterogeneity resolved to the single cell level. The biological content makes these platforms clinically relevant and adds significant value for commercialization.
We aim to develop technologies and approaches that provide information relevant to the clinical care of GBM pafients, but which should also be broadly applicable to other solid tumor cancers. We have assembled highly cross-disciplinary, interactive team that has several years of experience at working together. Our team bridges from the physical science lab to the oncology clinic.

Public Health Relevance

This project develops powerful new in vitro diagnostic platforms for quantitative molecular analysis of small heterogeneous tumor samples directly from the operating room. The biological content makes these platforms clinically relevant.and adds significant value for commercialization. The tools and knowledge developed in this project will be broadly applicable to guiding more effective therapy for patients with cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151819-05
Application #
8707991
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$349,354
Indirect Cost
Name
California Institute of Technology
Department
Type
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Thai, Minh; Graham, Nicholas A; Braas, Daniel et al. (2014) Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metab 19:694-701
Masui, Kenta; Cavenee, Webster K; Mischel, Paul S (2014) mTORC2 in the center of cancer metabolic reprogramming. Trends Endocrinol Metab 25:364-73
Zhao, Jimmy L; Ma, Chao; O'Connell, Ryan M et al. (2014) Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell 14:445-59
Wong, Deborah J L; Rao, Amol; Avramis, Earl et al. (2014) Exposure to a histone deacetylase inhibitor has detrimental effects on human lymphocyte viability and function. Cancer Immunol Res 2:459-68
Robert, Lidia; Tsoi, Jennifer; Wang, Xiaoyan et al. (2014) CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clin Cancer Res 20:2424-32
Nathanson, David A; Gini, Beatrice; Mottahedeh, Jack et al. (2014) Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343:72-6
Chodon, Thinle; Comin-Anduix, BegoƱa; Chmielowski, Bartosz et al. (2014) Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin Cancer Res 20:2457-65
Ribas, Antoni; Tumeh, Paul C (2014) The future of cancer therapy: selecting patients likely to respond to PD1/L1 blockade. Clin Cancer Res 20:4982-4
Gini, Beatrice; Mischel, Paul S (2014) Greater than the sum of its parts: single-nucleus sequencing identifies convergent evolution of independent EGFR mutants in GBM. Cancer Discov 4:876-8
Akhavan, David; Pourzia, Alexandra L; Nourian, Alex A et al. (2013) De-repression of PDGFR* transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. Cancer Discov 3:534-47

Showing the most recent 10 out of 22 publications