Unlike most core resource facilities appended to program project grants, the new Validation Core proposed here is more than a detached support unit. The purpose of this core is to assure that the signal obtained from the experiments performed in the major projects is valid, a necessary step before deeper studies, in particular those bound for the clinic, can be undertaken. We will validate the probes and methods produced in several ways, including a) characterization of nanomaterial targeting moieties through use and/or development of suitable binding affinity assays in vitro;b) determination of selective targeting of nanomaterials in cellule through fluorescent or radioactive means;c) ex vivo pharmacokinetic studies in relevant animal models;d) in vivo pharmacokinetic and pharmacodynamic studies through small animal imaging and e) provision of all animalrelated services, including pre-Good Laboratory Practice (GLP) toxicity assays, in collaboration with the Department of Molecular and Comparative Pathobiology (Drs. Gabrielson and Brayton). We will further perform correlation of any imaging studies with traditional ex vivo and histological approaches and will also attempt to cross-correlate, when practical and useful, the MR-based imaging findings with other modalities, especially radionuclide-based and those that employ optical (fluorescence and bioluminescence) imaging. In that regard the validation core will perform a certain degree of its own research - rather than merely providing routine services - but that research will always be related to the major projects. Because validation is critical to any imaging study, the integration of this core to the projects is clear. The goal of this core is to enable the scientists performing the studies of the major projects to focus on the most complex aspects of their work, Interfacing closely with the core not only to procure routine services, but to assure the validity of their results.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151838-05
Application #
8734341
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$127,937
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Stark, Alejandro; Shin, Dong Jin; Pisanic 2nd, Thomas et al. (2016) A parallelized microfluidic DNA bisulfite conversion module for streamlined methylation analysis. Biomed Microdevices 18:5
Attaluri, Anilchandra; Seshadri, Madhav; Mirpour, Sahar et al. (2016) Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study. Int J Hyperthermia 32:543-57
Williford, John-Michael; Archang, Maani M; Minn, Il et al. (2016) Critical Length of PEG Grafts on lPEI/DNA Nanoparticles for Efficient in Vivo Delivery. ACS Biomater Sci Eng 2:567-578
Mukherjee, Amarnath; Kumar, Binod; Hatano, Koji et al. (2016) Development and Application of a Novel Model System to Study ""Active"" and ""Passive"" Tumor Targeting. Mol Cancer Ther 15:2541-2550
Yan, Lesan; Li, Xingde (2016) Biodegradable Stimuli-Responsive Polymeric Micelles for Treatment of Malignancy. Curr Pharm Biotechnol 17:227-36
Lesniak, Wojciech G; Oskolkov, Nikita; Song, Xiaolei et al. (2016) Salicylic Acid Conjugated Dendrimers Are a Tunable, High Performance CEST MRI NanoPlatform. Nano Lett 16:2248-53
Huang, Yu-Ja; Hoffmann, Gwendolyn; Wheeler, Benjamin et al. (2016) Cellular microenvironment modulates the galvanotaxis of brain tumor initiating cells. Sci Rep 6:21583
Dawidczyk, Charlene M; Russell, Luisa M; Searson, Peter C (2015) Recommendations for Benchmarking Preclinical Studies of Nanomedicines. Cancer Res 75:4016-20
Behnam Azad, Babak; Banerjee, Sangeeta R; Pullambhatla, Mrudula et al. (2015) Evaluation of a PSMA-targeted BNF nanoparticle construct. Nanoscale 7:4432-42
Song, Xiaolei; Airan, Raag D; Arifin, Dian R et al. (2015) Label-free in vivo molecular imaging of underglycosylated mucin-1 expression in tumour cells. Nat Commun 6:6719

Showing the most recent 10 out of 109 publications