Imaging Core The imaging capabilities at the Center for Translational Neuroimaging at Northeastern University offer unique capabilities for the visualization of nanopreparations in vivo. The center currently houses a high-resolution microSPECT/CT (NanoSPECT/CT, Bioscan, Inc.) and a 7T MR system (BioSpec, Bruker Biospin, Inc.) with a microPET to be installed in Q4 of this year. With extensive experience in onco-based imaging protocols, the imaging core enables the assessment of kinetics and dynamics of radio-labeled nanopreparations via SPECT and PET as well as nanopreparations for contrast enhanced MR studies. Multi-modal data acquisition support projects in drug development, intervention monitoring, disease diagnosis and tracking, and functional imaging. In addition to instrumentation and protocol development, the core offers a library of analysis functions for longitudinal studies of animal models of disease. Such functionality focuses on the tracking of nanopreparations via standard in vivo and ex vivo biodistribution analysis as well as novel sub-organ and sub-tumor metrics of distribution. The core hosts data and analysis results on a web-based data storage and analysis center dedicated to pre-clinical longitudinal imaging studies. Faculty and collaborating researchers have real-time access to data via the web-based repository along with remote scheduling and study-planning capabilities.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151881-03
Application #
8381588
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
3
Fiscal Year
2012
Total Cost
$141,973
Indirect Cost
Name
Northeastern University
Department
Type
DUNS #
001423631
City
Boston
State
MA
Country
United States
Zip Code
02115
Petrenko, Valery A; Gillespie, James W (2017) Paradigm shift in bacteriophage-mediated delivery of anticancer drugs: from targeted 'magic bullets' to self-navigated 'magic missiles'. Expert Opin Drug Deliv 14:373-384
Pattni, Bhushan S; Jhaveri, Aditi; Dutta, Ivy et al. (2017) Targeting energy metabolism of cancer cells: Combined administration of NCL-240 and 2-DG. Int J Pharm 532:149-156
Singh, Amit; Xu, Jing; Mattheolabakis, George et al. (2016) EGFR-targeted gelatin nanoparticles for systemic administration of gemcitabine in an orthotopic pancreatic cancer model. Nanomedicine 12:589-600
Su, Mei-Ju; Aldawsari, Hibah; Amiji, Mansoor (2016) Pancreatic Cancer Cell Exosome-Mediated Macrophage Reprogramming and the Role of MicroRNAs 155 and 125b2 Transfection using Nanoparticle Delivery Systems. Sci Rep 6:30110
Sriraman, Shravan Kumar; Pan, Jiayi; Sarisozen, Can et al. (2016) Enhanced Cytotoxicity of Folic Acid-Targeted Liposomes Co-Loaded with C6 Ceramide and Doxorubicin: In Vitro Evaluation on HeLa, A2780-ADR, and H69-AR Cells. Mol Pharm 13:428-37
Gillespie, James W; Wei, Lixia; Petrenko, Valery A (2016) Selection of Lung Cancer-Specific Landscape Phage for Targeted Drug Delivery. Comb Chem High Throughput Screen 19:412-22
Patel, Niravkumar R; Piroyan, Aleksandr; Nack, Abbegial H et al. (2016) Design, Synthesis, and Characterization of Folate-Targeted Platinum-Loaded Theranostic Nanoemulsions for Therapy and Imaging of Ovarian Cancer. Mol Pharm 13:1996-2009
Zhang, Yilin; Sriraman, Shravan Kumar; Kenny, Hilary A et al. (2016) Reversal of Chemoresistance in Ovarian Cancer by Co-Delivery of a P-Glycoprotein Inhibitor and Paclitaxel in a Liposomal Platform. Mol Cancer Ther 15:2282-2293
Han, Lei; Liu, Pei; Petrenko, Valery A et al. (2016) A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library. Sci Rep 6:22199
Sriraman, Shravan Kumar; Salzano, Giusseppina; Sarisozen, Can et al. (2016) Anti-cancer activity of doxorubicin-loaded liposomes co-modified with transferrin and folic acid. Eur J Pharm Biopharm 105:40-9

Showing the most recent 10 out of 80 publications