The overall goal of this U54 application is to support a highly multidisciplinary team of expert chemists, engineers, biologists, material scientists and clinicians to develop and rapidly translate new nanotechnologies to better diagnose and treat cancer in the clinic. This team formed a Center for Cancer Nanotechnology Excellence (CCNE) in 2004 and over the past 5 years has shown extraordinary productivity through its integrated research programs and shared resources. The primary team includes investigators from Massachusetts Institute of Technology (MIT), Harvard Medical School (HMS), Massachusetts General Hospital (MGH) and Brigham and Women's Hospital (BWH) and Harvard Faculty of Arts and Sciences (FAS). The CCNE thus effectively bridges programs in basic sciences at two Universities (MIT and Harvard) and clinical programs at leading Hospitals (MGH and BWH). The program will continue to be headed up by Dr. Robert Langer and Dr. Ralph Weissleder as Co-Pls. Dr. Langer is Institute Professor at MIT and member of the Koch Institute for Integrative Cancer Research at MIT (Kl). Dr. Weissleder is a Professor at Harvard Medical School, the Director of the Center for Systems Biology at MGH, a practicing clinician at MGH and a member of the Dana Farber Harvard Cancer Center. Public Health Relevance: With recent advances in nanotechnology and the introduction of some new nanomaterials into clinical trials, a myriad of opportunities are available to advance medical science and disease treatment. The translational goal is now to better control and manipulate emerging new materials by precisely configuring molecular structures, adding biological functionalities, decreasing or eliminating toxicities, and creating supramolecular

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151884-02
Application #
8136182
Study Section
Special Emphasis Panel (ZCA1-GRB-S (M1))
Program Officer
Grodzinski, Piotr
Project Start
2010-09-01
Project End
2015-07-31
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
2
Fiscal Year
2011
Total Cost
$2,290,029
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Internal Medicine/Medicine
Type
Schools of Arts and Sciences
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Corbo, Claudia; Molinaro, Roberto; Tabatabaei, Mateen et al. (2017) Personalized protein corona on nanoparticles and its clinical implications. Biomater Sci 5:378-387
Miller, Miles A; Askevold, Bjorn; Mikula, Hannes et al. (2017) Nano-palladium is a cellular catalyst for in vivo chemistry. Nat Commun 8:15906
Mou, Haiwei; Smith, Jordan L; Peng, Lingtao et al. (2017) CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol 18:108
Arlauckas, Sean P; Garris, Christopher S; Kohler, Rainer H et al. (2017) In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med 9:
Mitchell, Michael J; Webster, Jamie; Chung, Amanda et al. (2017) Polymeric mechanical amplifiers of immune cytokine-mediated apoptosis. Nat Commun 8:14179
Shi, Jinjun; Kantoff, Philip W; Wooster, Richard et al. (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20-37
Quadir, Mohiuddin A; Morton, Stephen W; Mensah, Lawrence B et al. (2017) Ligand-decorated click polypeptide derived nanoparticles for targeted drug delivery applications. Nanomedicine 13:1797-1808
Doloff, Joshua C; Veiseh, Omid; Vegas, Arturo J et al. (2017) Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat Mater 16:671-680
Behzadi, Shahed; Serpooshan, Vahid; Tao, Wei et al. (2017) Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46:4218-4244
Rowlands, Christopher J; Park, Demian; Bruns, Oliver T et al. (2017) Wide-field three-photon excitation in biological samples. Light Sci Appl 6:e16255

Showing the most recent 10 out of 162 publications