Energy expenditure is a key component of energetics, and physical activity comprises the largest modifiable component of energy expenditure. Energy expenditure and physical activity are strongly related to insulin resistance and other markers of glycemic control important for cancer risk. Sedentary behavior has also recently emerged as an independent predictor of metabolic risk, and temporal analyses of objective sedentary behavior data have indicated that breaks in sitting time may be a critical intervention strategy to complement improvements in moderate to vigorous physical activity. In the last decade, the impact of the built environment has also been assessed in relation to physical activity, sedentary behavior and weight status. This research, however, has focused on a static view of residential neighborhood which may be confounding the relationship between health and place. We propose to advance the field of energy expenditure, physical activity, and sedentary behavior assessment across the cancer continuum by improving the accuracy of energy expenditure-related assessments in our TREC projects #2 and #3. We will use state ofthe art acceierometers with simultaneous heart rate recording to improve the accuracy of measuring physical activity, sedentary behavior, and energy expenditure. In addition to branched equation modeling techniques we will also use new computational approaches for analyzing data streams from these devices, including artificial neural networks that allow comtjining these data to decipher the frequency,intensity, duration, and type of physical activity and sedentary behavior so as to optimally characterize behaviors of study participants and reduce the measurement noise in observed relationships between these behaviors and markers of glycemic control. Finally, data from Global Positioning System devices that track the temporal and spatial movements of participants will be combined with existing Geographic Information Systems data for San Diego County to allow us to develop obesogenic environmental exposure estimates and relate these to the metabolic risk factors. These data will be processed through software developed by our group under the NIH Gene &Environment Initiative. This will enable us to use novel computational techniques to assess the relationships over time and across the study arms between energy expenditure, physical activity and sedentary behavior and metabolic risk factors related to breast cancer measured in Projects #2  as well as the moderating effect of exposure to obesogenic environments.

Public Health Relevance

This study will advance the field of energy expenditure and daily activity assessment through objective monitoring, while improving the accuracy of energy expenditure-related assessments in our TREC projects #2 and #3. The study crosses multiple disciplines including public health, exercise science, computational science and urban planning. This study will increase our understanding ofthe behavioral mechanisms of energetics and cancer risk and will help to identify opportunities for targeted interventions.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA155435-04
Application #
8688939
Study Section
Special Emphasis Panel (ZCA1-SRLB-4)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
4
Fiscal Year
2014
Total Cost
$153,149
Indirect Cost
$64,574
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Hartman, Sheri J; Marinac, Catherine R; Natarajan, Loki et al. (2015) Lifestyle factors associated with cognitive functioning in breast cancer survivors. Psychooncology 24:669-75
Chung, H; Lee, Y S; Mayoral, R et al. (2015) Omega-3 fatty acids reduce obesity-induced tumor progression independent of GPR120 in a mouse model of postmenopausal breast cancer. Oncogene 34:3504-13
Emond, Jennifer A; Pierce, John P; Natarajan, Loki et al. (2014) Risk of breast cancer recurrence associated with carbohydrate intake and tissue expression of IGFI receptor. Cancer Epidemiol Biomarkers Prev 23:1273-9
James, Peter; Berrigan, David; Hart, Jaime E et al. (2014) Effects of buffer size and shape on associations between the built environment and energy balance. Health Place 27:162-70
Patterson, Ruth E; Rock, Cheryl L; Kerr, Jacqueline et al. (2013) Metabolism and breast cancer risk: frontiers in research and practice. J Acad Nutr Diet 113:288-96
Schmitz, Kathryn H; Neuhouser, Marian L; Agurs-Collins, Tanya et al. (2013) Impact of obesity on cancer survivorship and the potential relevance of race and ethnicity. J Natl Cancer Inst 105:1344-54