Cancer progression is determined by intrinsic changes in the developing cancer cells as well as by important interactions between the cancer cells and other components of the tumor microenvironment. Lung cancer is the leading cause of cancer death in the United States and woridwide. Despite recent progress in lung cancer treatment, long-term survival rates for individuals with late-stage disease remain very poor. Using a wellstudied mouse model of invasive and metastatic non-small cell lung cancer (NSCLC) as well as human lung cancer cell lines and human cancer specimens, we will characterize and functionally test components of the extracellular matrix (ECM) and a specific cell type within tumor stroma for their effects on tumor biology, including tumor progression. Project 2 has three Specific Aims.
Aim 1 is focused on functional characterization of Tenascin C (TNC), an ECM component that has been implicated in tumor progression in a variety of settings, including in this model of NSCCL. We will use both cell-based and whole animal approaches to examine the effects of manipulation of TNC function on cancer progression.
In Aim 2, we will use an ECM microarray to identify additional ECM components that participate in cancer cell adhesion and may affect aspects of invasive and metastatic behavior. Screening studies, which will be carried out with cells of both mouse and human origin, will be followed by functional analysis.
Aim 3 utilizes advanced methods in genetic engineering to manipulate cancer-associated fibroblasts within established, late-stage NSCLC, in order to investigate the consequences of gross and more subtle alternations within this cell population for cancer cell biology. The methods developed for this purpose can also be applied to the study of other cancer-associated cell populations within the tumor microenvironment. This project has the potential to uncover tumor-stromal interactions that mediate critical aspects of cancer progression. The functional validation of these interactions could lead to new therapeutic strategies for treating NSCLC in humans and/or to prevent its progression. Project 2 is well integrated into the larger structure of this TMEN application through multiple interactions with each of the other projects and investigator groups.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA163109-03
Application #
8567754
Study Section
Special Emphasis Panel (ZCA1-SRLB-3)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
3
Fiscal Year
2013
Total Cost
$220,351
Indirect Cost
$56,847
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Carmona, G; Perera, U; Gillett, C et al. (2016) Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE. Oncogene 35:5155-69
Spiegel, Asaf; Brooks, Mary W; Houshyar, Samin et al. (2016) Neutrophils Suppress Intraluminal NK Cell-Mediated Tumor Cell Clearance and Enhance Extravasation of Disseminated Carcinoma Cells. Cancer Discov 6:630-49
Naba, Alexandra; Clauser, Karl R; Ding, Huiming et al. (2016) The extracellular matrix: Tools and insights for the "omics" era. Matrix Biol 49:10-24
Pfirschke, Christina; Engblom, Camilla; Rickelt, Steffen et al. (2016) Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy. Immunity 44:343-54
De Cock, Jasmine M; Shibue, Tsukasa; Dongre, Anushka et al. (2016) Inflammation Triggers Zeb1-Dependent Escape from Tumor Latency. Cancer Res 76:6778-6784
Pucci, Ferdinando; Rickelt, Steffen; Newton, Andita P et al. (2016) PF4 Promotes Platelet Production and Lung Cancer Growth. Cell Rep 17:1764-1772
Lu, Haihui; Clauser, Karl R; Tam, Wai Leong et al. (2014) A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 16:1105-17
Naba, Alexandra; Clauser, Karl R; Whittaker, Charles A et al. (2014) Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver. BMC Cancer 14:518
Labelle, Myriam; Begum, Shahinoor; Hynes, Richard O (2014) Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A 111:E3053-61
Pattabiraman, Diwakar R; Weinberg, Robert A (2014) Tackling the cancer stem cells - what challenges do they pose? Nat Rev Drug Discov 13:497-512

Showing the most recent 10 out of 22 publications