Cancer progression is determined by intrinsic changes in the developing cancer cells as well as by important interactions between the cancer cells and other components of the tumor microenvironment. Lung cancer is the leading cause of cancer death in the United States and woridwide. Despite recent progress in lung cancer treatment, long-term survival rates for individuals with late-stage disease remain very poor. Using a wellstudied mouse model of invasive and metastatic non-small cell lung cancer (NSCLC) as well as human lung cancer cell lines and human cancer specimens, we will characterize and functionally test components of the extracellular matrix (ECM) and a specific cell type within tumor stroma for their effects on tumor biology, including tumor progression. Project 2 has three Specific Aims.
Aim 1 is focused on functional characterization of Tenascin C (TNC), an ECM component that has been implicated in tumor progression in a variety of settings, including in this model of NSCCL. We will use both cell-based and whole animal approaches to examine the effects of manipulation of TNC function on cancer progression.
In Aim 2, we will use an ECM microarray to identify additional ECM components that participate in cancer cell adhesion and may affect aspects of invasive and metastatic behavior. Screening studies, which will be carried out with cells of both mouse and human origin, will be followed by functional analysis.
Aim 3 utilizes advanced methods in genetic engineering to manipulate cancer-associated fibroblasts within established, late-stage NSCLC, in order to investigate the consequences of gross and more subtle alternations within this cell population for cancer cell biology. The methods developed for this purpose can also be applied to the study of other cancer-associated cell populations within the tumor microenvironment. This project has the potential to uncover tumor-stromal interactions that mediate critical aspects of cancer progression. The functional validation of these interactions could lead to new therapeutic strategies for treating NSCLC in humans and/or to prevent its progression. Project 2 is well integrated into the larger structure of this TMEN application through multiple interactions with each of the other projects and investigator groups.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-3)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
United States
Zip Code
Naba, Alexandra; Clauser, Karl R; Lamar, John M et al. (2014) Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. Elife 3:e01308
Lu, Haihui; Clauser, Karl R; Tam, Wai Leong et al. (2014) A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 16:1105-17
Naba, Alexandra; Clauser, Karl R; Whittaker, Charles A et al. (2014) Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver. BMC Cancer 14:518
Labelle, Myriam; Begum, Shahinoor; Hynes, Richard O (2014) Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A 111:E3053-61
Pattabiraman, Diwakar R; Weinberg, Robert A (2014) Tackling the cancer stem cells - what challenges do they pose? Nat Rev Drug Discov 13:497-512
Shibue, Tsukasa; Brooks, Mary W; Weinberg, Robert A (2013) An integrin-linked machinery of cytoskeletal regulation that enables experimental tumor initiation and metastatic colonization. Cancer Cell 24:481-98