The mission of the Center, to be designated the EMDR Center, is to conduct fundamental inquiries on mechanisms responsible for EMDR in order to identify inhibitors of EMDR pathways, to promote their testing in clinical trials in children with ALL and neuroblastoma, and to share the knowledge acquired and the technology developed with the scientific community. Through extensive collaboration, the 7 investigators of the EMDR Center will test the fundamental hypothesis that the bone marrow provides a unique microenvironment for ALL and neuroblastoma cells which allows them to survive the injuries induced by drugs and promotes the establishment of drug-resistant cells that are responsible for disease recurrence and treatment failure. Accordingly, the secondary hypothesis is that blocking specific pathways responsible for EMDR with inhibitors will prevent the emergence of these drug-resistant cells. These hypotheses will be tested through 3 interrelated research projects that will examine 3 specific leading pathways of EMDR in childhood ALL and neuroblastoma. All projects will combine experiments in co-cultures of tumor cell lines and bone marrowderived stromal cells and in murine models. Projects will then validate their observations in bone marrow samples from patients with ALL and neuroblastoma, to be made available through the EMDR Center. The data generated will be used to promote the implementation of phase l/ll clinical trials, to be conducted by 2 pediatric clinical trials consortia headquartered at CHLA. Projects will explore new concepts such as the effects of glycosylation, methylation and tumor microenvironmental fuels on the development of EMDR, generate new mouse models and data sets, and develop new technology in drug screening that will be shared with the scientific community through the NCI-TMEN. Furthermore, the EMDR Center will benefit from closely interacting with several academic entities at CHLA, USC and COH, and at the same time will substantially contribute to expanding their research focus on the tumor microenvironment.

Public Health Relevance

Cancer is the second most common cause of death among children. Drug resistance is a major roadblock in attempts to increase the cure rate in these patients and a better understanding of the role of the microenvironment in drug resistance will result in the identification of specific targets for intervention. If successful, inhibition of EMDR will provide a new paradigm and result in improved survival not only for children with ALL and neuroblastoma but also for all cancer patients.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-3 (O1))
Program Officer
Mohla, Suresh
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Hospital of Los Angeles
Los Angeles
United States
Zip Code
Hadjidaniel, Michael D; Muthugounder, Sakunthala; Hung, Long T et al. (2017) Tumor-associated macrophages promote neuroblastoma via STAT3 phosphorylation and up-regulation of c-MYC. Oncotarget 8:91516-91529
Nakata, Rie; Shimada, Hiroyuki; Fernandez, G Esteban et al. (2017) Contribution of neuroblastoma-derived exosomes to the production of pro-tumorigenic signals by bone marrow mesenchymal stromal cells. J Extracell Vesicles 6:1332941
DeClerck, Yves A; Pienta, Kenneth J; Woodhouse, Elisa C et al. (2017) The Tumor Microenvironment at a Turning Point Knowledge Gained Over the Last Decade, and Challenges and Opportunities Ahead: A White Paper from the NCI TME Network. Cancer Res 77:1051-1059
Borriello, Lucia; Nakata, Rie; Sheard, Michael A et al. (2017) Cancer-Associated Fibroblasts Share Characteristics and Protumorigenic Activity with Mesenchymal Stromal Cells. Cancer Res 77:5142-5157
Lifshitz, Veronica; Priceman, Saul J; Li, Wenzhao et al. (2017) Sphingosine-1-Phosphate Receptor-1 Promotes Environment-Mediated and Acquired Chemoresistance. Mol Cancer Ther 16:2516-2527
Borriello, Lucia; Seeger, Robert C; Asgharzadeh, Shahab et al. (2016) More than the genes, the tumor microenvironment in neuroblastoma. Cancer Lett 380:304-14
Yue, Chanyu; Shen, Shudan; Deng, Jiehui et al. (2015) STAT3 in CD8+ T Cells Inhibits Their Tumor Accumulation by Downregulating CXCR3/CXCL10 Axis. Cancer Immunol Res 3:864-870
HaDuong, Josephine H; Blavier, Laurence; Baniwal, Sanjeev K et al. (2015) Interaction between bone marrow stromal cells and neuroblastoma cells leads to a VEGFA-mediated osteoblastogenesis. Int J Cancer 137:797-809
Bergfeld, Scott A; Blavier, Laurence; DeClerck, Yves A (2014) Bone marrow-derived mesenchymal stromal cells promote survival and drug resistance in tumor cells. Mol Cancer Ther 13:962-75
Borriello, Lucia; DeClerck, Yves A (2014) [Tumor microenvironment and therapeutic resistance process]. Med Sci (Paris) 30:445-51

Showing the most recent 10 out of 15 publications