Dr. Flaherty has been the principal investigator of the first combination targeted therapy trial to build on single agent BRAF inhibition in which a selective MEK inhibitor is combined with this agent. In addition to being the academic architect of these clinical trial protocols, Dr. Flaherty and colleagues at DF/HCC have accrued the largest number of patients to these trials. As a consequence, our center not only has the longest clinical experience with these agents, but also an increasingly large repository of archival tumor specimens and fresh tumor biopsies obtained before and during treatment, as well as at the time of clinical progression. This Core will continue to collect tumor biopsies prior to and during treatment with BRAF inhibitors, and then identify and isolate cellular constituents of the tumor microenvironment including immune subpopulations, endothelial cells, pericytes, and fibroblasts. We will also genetically characterize tumor cells for previously described oncogene and tumor suppressor gene alterations including point mutations and copy number. Our group is uniquely poised to direct our clinical and research infrastructure to studying the problem of resistance to BRAF targeted therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA163125-04
Application #
8744891
Study Section
Special Emphasis Panel (ZCA1-SRLB-3)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
4
Fiscal Year
2014
Total Cost
$194,008
Indirect Cost
$29,128
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Xu, Jie; Sun, Heather H; Fletcher, Christopher D M et al. (2016) Expression of Programmed Cell Death 1 Ligands (PD-L1 and PD-L2) in Histiocytic and Dendritic Cell Disorders. Am J Surg Pathol 40:443-53
Pfirschke, Christina; Engblom, Camilla; Rickelt, Steffen et al. (2016) Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy. Immunity 44:343-54
Smith, Michael P; Brunton, Holly; Rowling, Emily J et al. (2016) Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy. Cancer Cell 29:270-84
Peng, Weiyi; Chen, Jie Qing; Liu, Chengwen et al. (2016) Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov 6:202-16
Chen, Pei-Ling; Roh, Whijae; Reuben, Alexandre et al. (2016) Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discov 6:827-37
Reardon, David A; Gokhale, Prafulla C; Klein, Sarah R et al. (2016) Glioblastoma Eradication Following Immune Checkpoint Blockade in an Orthotopic, Immunocompetent Model. Cancer Immunol Res 4:124-35
Lesokhin, Alexander M; Ansell, Stephen M; Armand, Philippe et al. (2016) Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. J Clin Oncol 34:2698-704
Ansell, Stephen M; Lesokhin, Alexander M; Borrello, Ivan et al. (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 372:311-9
Mahoney, Kathleen M; Rennert, Paul D; Freeman, Gordon J (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14:561-84
Mahoney, Kathleen M; Sun, Heather; Liao, Xiaoyun et al. (2015) PD-L1 Antibodies to Its Cytoplasmic Domain Most Clearly Delineate Cell Membranes in Immunohistochemical Staining of Tumor Cells. Cancer Immunol Res 3:1308-15

Showing the most recent 10 out of 29 publications