We hypothesize that dense collagen matrices create a mechanical "stress" environment that alters cellular invasion and cellular metabolism, and promotes, depending on the ECM composition, proliferation or dormancy at metastatic target sites. We propose that changes in the fluorescence lifetime of NAD(P)H and FAD can be used 1) in the research setting to track and understand disease progression, macrophage infiltration, disseminated tumor cells (DTCs) and dormancy;and 2) developed for use in the clinical setting to provide early information about tumor progression and dissemination. NAD(P)H and FAD are particularly attractive potential biomarkers for clinical use, as they are endogenous signals that require no external label and can be imaged in fresh or fixed biopsy samples. These questions will be addressed in three specific aims: 1) Determine whether local regions of increased stress (mechanical, hypoxic or hypoglycemic) alter the metabolic signature of tumor and stromal cells;2) Investigate mechanisms by which fibrosis affects the dormancy and metabolic signatures of DTCs;3) Determine whether metabolic and dormancy signatures are useful predictors of stage and outcome in human HNSCC and breast cancer patients.

Public Health Relevance

We hypothesize that dense collagen matrices create a mechanical stress environment that alters cellular invasion and cellular metabolism, and promotes, depending on the ECM composition, proliferation or dormancy at metastatic target sites. We propose that changes in the fluorescence lifetime of NAD(P)H and FAD can be used 1) in the research setting to track and understand disease progression, macrophage infiltration, disseminated tumor cells (DTCs) and dormancy;and 2) developed for use in the clinical setting to provide early information about tumor progression and dissemination. In this project we will study these issues.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA163131-04
Application #
8708783
Study Section
Special Emphasis Panel (ZCA1-SRLB-3)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
4
Fiscal Year
2014
Total Cost
$253,397
Indirect Cost
$42,208
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Williams, James K; Entenberg, David; Wang, Yarong et al. (2016) Validation of a device for the active manipulation of the tumor microenvironment during intravital imaging. Intravital 5:
Hosseini, Hedayatollah; Obradović, Milan M S; Hoffmann, Martin et al. (2016) Early dissemination seeds metastasis in breast cancer. Nature :
Alsadeq, A; Strube, S; Krause, S et al. (2015) Effects of p38α/β inhibition on acute lymphoblastic leukemia proliferation and survival in vivo. Leukemia 29:2307-16
Curran, Colleen S; Carrillo, Esteban R; Ponik, Suzanne M et al. (2015) Collagen density regulates xenobiotic and hypoxic response of mammary epithelial cells. Environ Toxicol Pharmacol 39:114-24
Sosa, Maria Soledad; Parikh, Falguni; Maia, Alexandre Gaspar et al. (2015) NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat Commun 6:6170
Hasegawa, Daisuke; Calvo, Veronica; Avivar-Valderas, Alvaro et al. (2015) Epithelial Xbp1 is required for cellular proliferation and differentiation during mammary gland development. Mol Cell Biol 35:1543-56
Sosa, María Soledad; Bragado, Paloma; Aguirre-Ghiso, Julio A (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14:611-22
Chéry, Lisly; Lam, Hung-Ming; Coleman, Ilsa et al. (2014) Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget 5:9939-51
Roh-Johnson, M; Bravo-Cordero, J J; Patsialou, A et al. (2014) Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 33:4203-12
Avivar-Valderas, A; Wen, H C; Aguirre-Ghiso, J A (2014) Stress signaling and the shaping of the mammary tissue in development and cancer. Oncogene 33:5483-90

Showing the most recent 10 out of 34 publications