The pathology core will facilitate research proposed in this grant by collecting, curating, and molecularly annotating human tissue specimens for study. Both fresh-frozen and formalin-fixed paraffin embedded samples will be included. The core will also provide histopathological expertise for the analysis of both human and murine tissue and assist in the development and interpretation of relevant immunohistochemical stains. We foresee the pathology core actively serving the aims of research projects 1 and 2.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
7U54CA163167-03
Application #
8567968
Study Section
Special Emphasis Panel (ZCA1-SRLB-3)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
3
Fiscal Year
2013
Total Cost
$17,999
Indirect Cost
$3,710
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Sandler, Vladislav M; Lis, Raphael; Liu, Ying et al. (2014) Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature 511:312-8
Valiente, Manuel; Obenauf, Anna C; Jin, Xin et al. (2014) Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156:1002-16
Leder, Kevin; Pitter, Ken; Laplant, Quincey et al. (2014) Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules. Cell 156:603-16
Ding, Bi-Sen; Cao, Zhongwei; Lis, Raphael et al. (2014) Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505:97-102
Wen, Duancheng; Banaszynski, Laura A; Liu, Ying et al. (2014) Histone variant H3.3 is an essential maternal factor for oocyte reprogramming. Proc Natl Acad Sci U S A 111:7325-30
Cao, Zhongwei; Ding, Bi-Sen; Guo, Peipei et al. (2014) Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell 25:350-65
Pietras, Alexander; Katz, Amanda M; Ekström, Elin J et al. (2014) Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14:357-69
Ozawa, Tatsuya; Riester, Markus; Cheng, Yu-Kang et al. (2014) Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 26:288-300
Katz, Amanda M; Amankulor, Nduka M; Pitter, Ken et al. (2012) Astrocyte-specific expression patterns associated with the PDGF-induced glioma microenvironment. PLoS One 7:e32453