MSKCC and Cornell are teaching facilities and we engage and involve as many junior investigators (which includes graduate students and post docs) into our projects, lab meetings, seminars, and any retreats. We have budgeted funds in this application and are willing to use other funding to ensure junior investigators have an opportunity to participate in TMEN national meetings, lectures, etc. The need for cross training of post doctoral fellows and graduate students in each of our three projects is critical. Both MSKCC and Cornell require fellows to have expertise in this very relevant discipline. Dr. Holland will lead the Cross-Training and Dissemination Effort within the TMEN Administrative Core. While no faculties are requesting budgetary support, all of our faculty on this grant will provide mentoring and training assistance to junior investigators. Dr. Holland will ensure there is a cross-training of post docs and grad students, from newly funded TMEN labs, for learning new technologies, assays, and imaging techniques and co-culture models (see table below). Dr. Holland's primary role in the Administrative Core will be to incorporate diverse, multidisciplinary approaches, recruiting and training personnel, and partnering and/or taking lead in trans-Network activities.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA163167-04
Application #
8731829
Study Section
Special Emphasis Panel (ZCA1-SRLB-3)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
4
Fiscal Year
2014
Total Cost
$39,215
Indirect Cost
$6,107
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Sandler, Vladislav M; Lis, Raphael; Liu, Ying et al. (2014) Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature 511:312-8
Valiente, Manuel; Obenauf, Anna C; Jin, Xin et al. (2014) Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156:1002-16
Leder, Kevin; Pitter, Ken; Laplant, Quincey et al. (2014) Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules. Cell 156:603-16
Ding, Bi-Sen; Cao, Zhongwei; Lis, Raphael et al. (2014) Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505:97-102
Wen, Duancheng; Banaszynski, Laura A; Liu, Ying et al. (2014) Histone variant H3.3 is an essential maternal factor for oocyte reprogramming. Proc Natl Acad Sci U S A 111:7325-30
Cao, Zhongwei; Ding, Bi-Sen; Guo, Peipei et al. (2014) Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell 25:350-65
Pietras, Alexander; Katz, Amanda M; Ekström, Elin J et al. (2014) Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14:357-69
Ozawa, Tatsuya; Riester, Markus; Cheng, Yu-Kang et al. (2014) Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 26:288-300
Katz, Amanda M; Amankulor, Nduka M; Pitter, Ken et al. (2012) Astrocyte-specific expression patterns associated with the PDGF-induced glioma microenvironment. PLoS One 7:e32453