The Biostatistics Core provides state-of-the-art statistical support for all SARC SPORE projects and investigators. The overall goal ofthe SARC SPORE is to better understand the etiology of sarcoma and its histologies, and to develop biomarkers and M new treatment options for sarcoma patients. The Biostatistics Core will provide statistical consultation and collaboration on all aspects of design, analysis and interpretation of the clinical trials and laboratory experiments. Core personnel will work closely with project leaders to ensure that the Biostatistics Core provides state-of-the-art statistical support. The primary objectives of the Biostatistics Core are to: 1. Provide study design and review all laboratory, animal, and clinical studies including feasibility assessment, power analysis, and sample size estimation; 2. Collaborate in the project data analysis, interpretation of results, and writing of final study reports and manuscripts; 3. Facilitate prospective collection, entry and quality control of data for the basic science experiments; and collaborate with the clinical trials core to facilitate quality control of clinical data;and 4. Develop and evaluate statistical methods for experimental design and data analysis. To ensure those aims are met, constant, regular communication among core personnel of this Biostatistics Core, SPORE projects and other Cores is needed, Regular weeKly conference calis among project and core leaders will review progress on clinical trials, laboratory studies and data analysis, ensure issues are recognized/addressed, and apprise leaders of developments.

Public Health Relevance

The SARC Sarcoma SPORE Biostatistics Core (Core D) is a cross-cutting SPORE resource, which will perform crucial roles in planning, conducting and analyzing translational and clinical sarcoma research in the main projects, other cores (e.g. Clinical Trials Core - Core C), developmental projects, and career development award efforts. Therefore, the Biostatistics Core is relevant, and essential, to achieving the SPORE goals.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
1U54CA168512-01
Application #
8395590
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (M1))
Project Start
2012-09-26
Project End
2017-08-31
Budget Start
2012-09-26
Budget End
2013-08-31
Support Year
1
Fiscal Year
2012
Total Cost
$187,333
Indirect Cost
$9,998
Name
Sarc
Department
Type
DUNS #
186146911
City
Ann Arbor
State
MI
Country
United States
Zip Code
48106
Choy, Edwin; Ballman, Karla; Chen, James et al. (2018) SARC018_SPORE02: Phase II Study of Mocetinostat Administered with Gemcitabine for Patients with Metastatic Leiomyosarcoma with Progression or Relapse following Prior Treatment with Gemcitabine-Containing Therapy. Sarcoma 2018:2068517
Yu, Peter Y; Lopez, Gonzalo; Braggio, Danielle et al. (2018) miR-133a function in the pathogenesis of dedifferentiated liposarcoma. Cancer Cell Int 18:89
Ignatius, Myron S; Hayes, Madeline N; Moore, Finola E et al. (2018) tp53 deficiency causes a wide tumor spectrum and increases embryonal rhabdomyosarcoma metastasis in zebrafish. Elife 7:
Hawkins, Allegra G; Basrur, Venkatesha; da Veiga Leprevost, Felipe et al. (2018) The Ewing Sarcoma Secretome and Its Response to Activation of Wnt/beta-catenin Signaling. Mol Cell Proteomics 17:901-912
Lee, Jen-Chieh; Li, Chien-Feng; Huang, Hsuan-Ying et al. (2017) ALK oncoproteins in atypical inflammatory myofibroblastic tumours: novel RRBP1-ALK fusions in epithelioid inflammatory myofibroblastic sarcoma. J Pathol 241:316-323
Heinrich, Michael C; Rankin, Cathryn; Blanke, Charles D et al. (2017) Correlation of Long-term Results of Imatinib in Advanced Gastrointestinal Stromal Tumors With Next-Generation Sequencing Results: Analysis of Phase 3 SWOG Intergroup Trial S0033. JAMA Oncol 3:944-952
Berberoglu, Michael A; Gallagher, Thomas L; Morrow, Zachary T et al. (2017) Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish. Dev Biol 424:162-180
Lopez, Gonzalo; Pollock, Raphael E (2017) Evaluating the Effect of HDAC8 Inhibition in Malignant Peripheral Nerve Sheath Tumors. Methods Mol Biol 1510:365-374
Tang, Fan; Choy, Edwin; Tu, Chongqi et al. (2017) Therapeutic applications of histone deacetylase inhibitors in sarcoma. Cancer Treat Rev 59:33-45
Chen, James L; David, Jason; Cook-Spaeth, Douglas et al. (2017) Autophagy Induction Results in Enhanced Anoikis Resistance in Models of Peritoneal Disease. Mol Cancer Res 15:26-34

Showing the most recent 10 out of 111 publications