Core 2 We will establish a core facility for in vivo cancer modeling and screening. This core facility (core 2 in the cancer systems biology center) will consist of several sets of functional components, defined as modules, including vector design and genome-scale library construction, large-scale cell culture and virus production, tumor transplantation and in vivo pooled screening, CRISPR/Cas9 mediated somatic genome editing for invasive phenotype analysis. In preliminary studies, we have applied in vivo somatic genome editing to generate tumor models of specific driver genes in mice, and demonstrated in vivo screening in a lung metastasis animal model. We will build four modules in this core, including the following: Module 1. Facility for vector design and genome-scale library construction. This module supports functional investigations of the mammalian genome that can reveal how genetic alterations lead to changes in phenotype, for example cellular invasiveness phenotype described in the Projects 1 and 2. Module 2. Facility for large-scale cell culture, viral vector production and transduction. This will serve for two purposes: (1) generation of customized viral particles for in vivo studies involving animals models for Projects 1 and 2 as well as other collaborators; (2) high-throughput screening applications that requires transduction of a population of cells with highly complex libraries. Module 3. Facility for tumor transplantation and in vivo pooled screening. This module will setup a facility with two capacities: (1) tumor transplantation and (2) in vivo pooled screening. This will serve for the purpose of validating the genes discovered in the projects in mouse models, to discover new genes with invasive phenotypes using in vivo screens, or to enable collaborative research for discovery of new drug targets. Module 4. Facility for CRISPR/Cas9 mediated somatic genome editing, for somatic genome editing in various animals for virtually any loci in the mouse genome. We will establish this platform and utilize it for research described in the projects and for setting up collaborations with various Yale investigators. Specifically, we will utilize CRISPR library approach in conjunction with the Rapid Analysis of Cell migration Enhancement (RACE) system described in the Projects, to identify how genetic alterations lead to changes in cellular invasiveness phenotype. In addition, we will utilize these modules in the core to build novel models of WNK1, NKCC1 and their targets, as well as combinations of mutant ERK, AKT and downstream genes. In summary, this core will be tightly integrated into the U54 center, provide a powerful technology and resource platform for in vivo cancer systems biology, and support Research Projects in the center as well as other collaborators at Yale and the wider scientific community. Since there is no facility currently existing at Yale providing similar functions, this new core will facilitate the establishment of the first in vivo cancer modeling and screening core facility at Yale. We will also utilize this core facility for promoting education and training, serving as a base for education of cancer researchers, scientists, students, and the general public.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
New Haven
United States
Zip Code
Shah, Sagar R; David, Justin M; Tippens, Nathaniel D et al. (2017) Brachyury-YAP Regulatory Axis Drives Stemness and Growth in Cancer. Cell Rep 21:495-507
Park, JinSeok; Holmes, William R; Lee, Sung Hoon et al. (2017) Mechanochemical feedback underlies coexistence of qualitatively distinct cell polarity patterns within diverse cell populations. Proc Natl Acad Sci U S A 114:E5750-E5759
Chow, Ryan D; Guzman, Christopher D; Wang, Guangchuan et al. (2017) AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat Neurosci 20:1329-1341
Freed, Daniel M; Bessman, Nicholas J; Kiyatkin, Anatoly et al. (2017) EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling Kinetics. Cell 171:683-695.e18
Smith, Chris L; Kilic, Onur; Schiapparelli, Paula et al. (2016) Migration Phenotype of Brain-Cancer Cells Predicts Patient Outcomes. Cell Rep 15:2616-24