Symptomatic urinary stone disease affects approximately 900,000 persons in the United States each year, resulting in an estimated annual medical cost of $4.5 billion. Computed tomography (CT) is the established method for imaging urinary calculi and can provide accurate sub-millimeter details of the size and location of renal stones. However, a complete characterization of renal stones, which includes stone composition and fragility, is critically needed for safe and cost effective management of stone disease, as well as for phenotyping of research subjects. Our long term goal is to use advanced CT methodologies to fully characterize urinary calculi, and to use evolving technology to reliably detect stone precursor lesions. Our objectives in this application are to develop a comprehensive, low-dose, stone-characterization exam using commercially-available dual-energy CT technology, and to detect stone precursor lesions using a prototype CT system equipped with energy resolving detectors. Based on our extensive preliminary results, we know that dual-energy CT can discriminate between several types of renal stones and provide accurate quantification of stone morphology. Our central hypothesis is that this quantitative information can be acquired at reduced dose levels and used to predict stone fragility, which we define as the likelihood of a stone to be broken by SWL or endoscopic methods. We further hypothesize that use of pre-clinical, 225-micron, energy-resolving CT detectors will allow detection of stone precursor lesions such as Randall's plaques, as well as the presence of trace elements having a suspected role in stone formation, such as zinc. We will accomplish these objectives through two specific aims: 1) Aim 1: Develop and validate a comprehensive low-dose stone-characterization exam using clinical dual-energy CT techniques. 2) Aim 2: Develop a pre-clinical spectral CT imaging technique that can detect precursor lesions and trace elements related to the formation of kidney stones.

Public Health Relevance

This proposal will develop imaging techniques that can determine urinary stone type and fragility in patients. The significance of this is that these advanced CT imaging techniques will allow physicians to more efficiently direct patient therapy and perform clinical research, potentially avoiding procedures associated with higher risk or cost.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-9)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Rule, Andrew D; Kremers, Walter K (2016) What Is the Correct Approach for Comparing GFR by Different Methods across Levels of GFR? Clin J Am Soc Nephrol 11:1518-21
Leng, Shuai; Huang, Alice; Cardona, Juan Montoya et al. (2016) Dual-Energy CT for Quantification of Urinary Stone Composition in Mixed Stones: A Phantom Study. AJR Am J Roentgenol 207:321-9
Perinpam, Majuran; Ware, Erin B; Smith, Jennifer A et al. (2016) Key influence of sex on urine volume and osmolality. Biol Sex Differ 7:12
Jaeger, Christopher D; Rule, Andrew D; Mehta, Ramila A et al. (2016) Endoscopic and Pathologic Characterization of Papillary Architecture in Struvite Stone Formers. Urology 90:39-44
Landry, Greg M; Hirata, Taku; Anderson, Jacob B et al. (2016) Sulfate and thiosulfate inhibit oxalate transport via a dPrestin (Slc26a6)-dependent mechanism in an insect model of calcium oxalate nephrolithiasis. Am J Physiol Renal Physiol 310:F152-9
Haley, William E; Enders, Felicity T; Vaughan, Lisa E et al. (2016) Kidney Function After the First Kidney Stone Event. Mayo Clin Proc 91:1744-1752
Giesen, Callen; Lieske, John C (2016) The Influence of Processing and Storage Conditions on Renal Protein Biomarkers. Clin J Am Soc Nephrol :
Ferrero, Andrea; Montoya, Juan C; Vaughan, Lisa E et al. (2016) Quantitative Prediction of Stone Fragility From Routine Dual Energy CT: Ex vivo proof of Feasibility. Acad Radiol 23:1545-1552
Lieske, John C; Turner, Stephen T; Edeh, Samuel N et al. (2016) Heritability of dietary traits that contribute to nephrolithiasis in a cohort of adult sibships. J Nephrol 29:45-51
Cheungpasitporn, Wisit; Rossetti, Sandro; Friend, Keith et al. (2016) Treatment effect, adherence, and safety of high fluid intake for the prevention of incident and recurrent kidney stones: a systematic review and meta-analysis. J Nephrol 29:211-9

Showing the most recent 10 out of 51 publications